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Preface

This study is another link in a growing chain of

research conducted at the Air Force Institute of Technology,

to design a tracking algorithm for use with the Air Force

Weapons Laboratory's high energy laser weapon system. As

such, my effort extends the work done by Capt. P. Loving

with the multiple model adaptive Kalman filter/enhanced

correlator tracking algorithm. This study investigates the

tracker's characteristics in order to evaluate better the

tracker's performance in various tracking scenarios.

A great deal of credit belongs to my predecessors

without whom an investigation of this complexity could not

have been accomplished. I would like to express my deepest

thanks to Dr. Peter Maybeck, my thesis advisor. His

guidance, motivation, and above all patience, was invaluable

to the completion of this study. I would also like to thank

Capt. Steve Rogers for his help in the Fourier domain.

I would like to express a special thanks to my family,

who kept telling me "you can do it". Most especially, I

want to express my love to my wife for supporting me

throughout the entire ordeal, and providing the secretarial

skills necessary to complete this effort. Finally I would

be truly remiss if I did not thank Daisy for all the times

she patiently waited for me while I studied, before we could

play.
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Abstract

Previous studies at the Air Force Institute of

Technology have led to the development of a multiple model

adaptive filter (MMAF) tracking algorithm which provides

significant Improvements in tracker performance against

highly-dynamic airborne targets, over the currently used

correlation trackers. A forward looking infra-red (FLIR)

sensor is used to provide a target shape function to the

tracking algorithm in the form of an 8 x 8 array of

intensities projected onto a field of view (FOV). This

target image measurement Is correlated with an estimate of

the target image, a template, to produce linear offset

pseudo-measurements from the center of the FOV, which are

provided as measurements to a bank of linear Kalman filters,

in the multiple model adaptive filtering (tMAF) structure.

The output of the MMAF provides the state estimates used in

pointing the FLIR sensor, and generating the new target

Image estimate. This study investigates the characteristics

of this algorithm in order to evaluate its performance

against various target scenarios.

xiv

S. . . . ..



"'-: I INTRODUCTION

Since the conception of lasers in the late 1950's, the

Idea of laser weapons has been generally considered science

fiction by the public at large. With the recent advances in

laser technology, the laser has been highly successful in

many military applications as well as medical and

industrial. The ability to transmit energy almost

instantaneously onto a target makes it an attractive

potential weapon system.

With the inception of the Strategic Defense Initiative

(SDI), the laser has been identified as a potential weapon

system warranting further investigation. With current laser

inefficiencies, limited energy is available in the beam.

This requires tight specifications for laser pointing and

tracking systems, in order to deposit sufficient energy on a

point to achieve damage to the target. This requirement has r

motivated research into innovative methods of accurately

tracking highly maneuvering targets, at high velocities.

1.1 BACKGROUND

The Air Force Weapons Laboratory at Kirtland AFB, New

Mexico, is currently developing high energy laser weapons to

be used against airborne targets and other vehicles. Target

measurements are obtained by means of a forward looking

-- 1-



infra-red sensor (FLIR). These measurements are used to

track the target passively, thereby preventing the target

from detecting that it is being tracked.

The target measurement provides information about

target motion. However, these measurements are corrupted by

several sources. These include: atmospheric jitter, sensor

measurement errors, background clutter, and mirror

vibration in the laser pointing.

Currently, pointing and tracking tasks are accomplished

by means of a correlation algorithm. This algorithm

compares FLIR measurement data from the previous sample

time to the current data. Cross correlation of the data

establishes relative position offsets. The offsets are

assumed to be due to the target motion and the FLIR is

pointed to center the target In its field of view (FOV).

Although the correlation tracker performs reasonably

well against a wide variety of targets, it has several

inherent limitations. The algorithm has no provisions to

distinguish between actual target motion and apparent target

motion due to signal corruption. Additionally, changing

target shapes due to changing of the FLIR/Target orientation

can be interpreted as target motion. Another limitation of

correlation trackers is time lag due to a finite time

requirement for cross correlation and pointing. The

algorithm provides no estimation of future positions. These

limitations motivate investigation of alternate tracker

-2-
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* algorithms.

Since 1978, the Air Force Institute of Technology has

supported a number of papers and Master's theses

demonstrating the feasibility and performance benefits of

tracking algorithms based on Kalman filtering techniques.

Kalman filter characteristics directly address the

correlator limitations previously discussed. Using the

statistical characteristics of atmospheric Jitter and

measurement errors, and a model of the anticipated target

dynamics, the filter estimates the target position at the

next sample time, from the previous history of measurements.

This estimate accounts for apparent target motion due to

atmospherics as previously discussed, in essence filtering

the n'Ise corrupted measurement. The prediction allows the

FLIR to anticipate target motion, thus reducing tracking

error due to time delays or pointing system dynamical lags.

The initial feasibility study by Hercier (9,12]
r

demonstrated performance benefits of an extended Kalman

filter algorithm against long range targets. The long range

point source was assumed to be well modeled as a bivarlate

Gaussian distribution. The 4-state filter used a first order

zero-mean Gauss-Markov position model to portray benign

target dynamics as seen in the FLIR image plane. The

filter measurement noise due to internal FLIR errors and

background clutter was modeled as uncorrelated in time and

space. This algorithm increased tracking performance an

-3-
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order of magnitude over the correlation algorithm, in benign

scenarios.

Work by Harnly and Jensen [2,7,8] incorporated

estimates of target velocities and accelerations to enable

tracking of more maneuverable targets. Target image equal-

intensity profiles were modeled as being elliptical rather

than circular as in Hercier's research, and adaptive

estimation of the target shape was incorporated.

Research by Slngletery [151 and Rogers [10,141

implemented algorithms which had no prior knowledge of, or

assumptions about target shape. The filter was tested

against multiple hot-spot targets with dynamic variations.

Rogers also developed an alternative filter algorithm

which used an enhanced correlator to obtain offsets from the

FLIR measurements relative to a template. The template was

composed by averaging centered target images from previous

measurments to estimate the target shape. The centering

process was accomplished via filter estimates of the target

location within the FLIR field-of-view. These offsets were

then used as measurements to a linear Kalman filter. The

reduced computational loading and comparable performance of

the linear filter/correlator (10,141 make it preferable over

the extended Kalman filter for many scenarios.

Follow-on research by Millner [13] and Kozemchak (3],

tested both the extended Kalman filter and the linear

filter/correlator algorithm against close range, highly

-4-
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maneuvering targets. Both filters were slow to respond to

harsh maneuvers significantly different from the filter's

target dynamics model, yielding difficulty in maintaining

lock on targets performing maneuvers in excess of 5 g's.

In order to improve upon this limitation, Flynn (1

Initially Investigated a multiple model adaptive filter

(MMAF). The MMAF was later successfully implemented by

Suizu [16]. The filter contained a bank of 2 filters, one

tuned for highly maneuvering targets, the other for benign

targets, to change the targets dynamics model adaptively.

The filter based on a highly maneuvering model included a

larger FOV, to aid the filter in maintaining lock of highly

maneuvering targets. Using probabilistic weighting, the

filter adaptively changed target dynamics model and FOV

size, increasing the filter performance to allow tracking of

targets pulling 20 g's at 20 km. Both the extended Kalman

filter and the linear filter/correlator were tested as

the form of 'elemental" filter within the MMAF bank, with

similar results.

Follow-on research by Loving [4] added an additional

filter to the MMAF bank, based on Intermediate levels of

target dynamics to aid in the tracking of highly maneuvering

targets. Additionally, a Maximum a Posteriori (MAP)

algorithm was developed as well as the Bayesian approach

previously used. The MAP algorithm utilized the same MMAF

bank as the Bayesian filter, however, it produced an

-5-(
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estimate from the one elemental filter with the highest

probability of validity, rather than forming a

probabilistically weighted average of all elemental filter

estimates. The addition of the third elemental filter in

the MMAF Bank showed significant Improvement in tracking

performance. Both the Bayesian and MAP estimation

techniques supported accurate tracking of highly dynamic

airborne targets, with little significant performance

variations realized between the two.

1.2 PROBLEM

This effort concentrates on expanding the results

* O obtained by Loving (4], using the linear filter/correlator

algorithm developed by Rogers (10,141. The potential for

decreased computational loading compared to the extended

Kalman filter, while maintaining comparable accuracy, makes r

this filter algorithm more attractive for further

development.

Several significant biases and apparently divergent

trends in filter error were observed in previous work.

Investigation of these results to identify modeling errors

or filter inadequacies are performed, In order to Improve
I-

filter performance.

In all previous work, the repositioning of the FLIR

sensor was assumed to be accomplished perfectly In less than

-6-,
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one sample period. In this work, effects of more realistic

feedback controllers will be investigated. This will be

accomplished by incorporating time lags, modeling inertial

and servo effects, in the pointing of the FLIR sensor.

A sensitivity analysis is conducted. A major aim of

the studies Is to determine tracker characteristics in order -

to provide insights into enhancing filter performance. In

addition, performance capabilities not previously

investigated are studied to establish fundamental limits of

performance, and to address the issue of being able to meet

strict performance specifications. Robustness studies

(filter not knowledgeable of parameter variations), is

another objective of the analysis. Parameters to be studied

will include: signal to noise ratio, range to target, and

pixel size sensitivity.

An investigation of tracking performance for various

target shapes will be conducted. The objective is to

identify tracker characteristics, and performance, with

respect to various image functions. This will provide

insights into image configurations that provide the least

and most difficulty to the tracker, as well as to discern

possible means of defeating the tracker.

1.2.1 THE CORRELATOR/LINEAR KALMAN FILTER TRACKER. The

correlator/linear Kalman filter developed by Rogers [10,141

uses pseudo-measurements obtained by processing FLIR data '. "

-7-



with an enhanced correlator to update the state estimate.

j The state estimate is then propagated forward in time based

on the filter's estimate of the target dynamics. This

estimate of the future target position is then used to

accomplish the pointing and control task for the FLIR/laser.

Figure 1-1 shows the algorithm structure for a single

filter, which could represent one of the elemantal filters

in the MMAF bank, described in the next chapter.

The tracking algorithm uses an 8 x 8 array of target

intensities obtained by the FLIR measurement, to establish a

64 element shape function from the target intensity profile.

This shape function Is correlated against a template made up

of previous shape functions that have been centered on the

FLIR Image plane. The x and y offsets which are obtained by

correlating the shape function and the template are input to

the Kalman filter as linear pseudo-measurements. The

measurements are used along with the filter's target

dynamics model to estimate the state at the next sample

period X(ti+i-). It is then desired to center the FLIR field

of view (FOV) at this point in preparation for the next

measurement.

The template generation portion of the algorithm begins

with the raw data obtained from the FLIR sensor. This data

is Fourier transformed to allow for the comparative ease of

performing the necessary computations In the frequency

domain, and to allow for optical processing eventually.

-8-

• ""°I



I- 0

CL S.

0 0 -4

sa~

j0 IX I-4)

-*) 0 0.-

C.. 0. 0 0P i ..
10 0' C) a4

C~ -x 0

.4. - S0
0.0

4)V 0 --

cI -- az

4- I
0 41 4.) lo (

o a

I00

4k I4 0~,

sa 0.

--9-



The 8 x 8 pixel array is expanded to a 24 x 24 pixel array.

This array contains the original 8 x 8 array centered with

additional FLIR data (r~ther than zeros, as is often used)

padded along the outer frame. The 24 x 24 pixel data array

reduces the effects of edges, allasing, and leakage

conditions encountered in transforming a finite sequence via

FFT techniques. The data is then shifted to align the

filter's estimate of the target centroid with the center of

the current FOV. The centered data is then temporally

averaged with the previous frames of transformed and

centered data; this is accomplished by means of exponential

smoothing rather than finite memory averaging so as not to

require storage and processins of many frames of data.

Inverse fast Fourier transforming (IFFT) this generates an

estimate of the shape function, the template, in the spatial

domain. Actual filter implementalon maintains the template

in the Fourier domain for correlation (IFFT) with the

current Fourier transformed FLIR intensity shape function.

The correlation of the template (h x(t-),t i]

shown in figure i-1) and the current intensity function

provides the measurements for the linear Kalman filter to

use for updating the state estimates, as discussed in

Chapter 4. The filter states include the target position

estimates (as seen in the FLIR image plane) due to true

target dynamics as well as position error, due to

atmospheric distortion of IR phase fronts. The FLIR

-10--4



pointing controller positions the center of the FOV at the

propagated filter estimate of the true vehicle position one

sample period into the future. On the other hand, the

position estimate of the data on the FLIR image plane is

determined by including the error effects due to atmospheric

turbulence. Thus, if there were only a single filter, the

expected location of the intensity profile relative to the

center of the FOV is the position offset predicted by the

atmospheric turbulence states estimates. The modifications

required to replace a single filter with the multiple model

adaptive filtering algorithm are discussed in Chapter 4. The

filter measurements are obtained by correlation of the FLIR

data with the template, and the Kalman filter update is then

incorporated into the state estimate establishing x(t 1 ).

This estimate is used then to center the FLIR intensity

profile to be included in the template for the next sample.

1.2.2 EXTENDED KALMAN FILTER TRACKER. The extended Kalman

filter algorithm was the first tracker in the investigation

of Kalman filter trackers. It utilizes the average

intensity over each of the 64 pixels in the 8 x 8 FLIR array

as a filter measurement. Due to the filter measurement

arrangement, the intensity function h[ (t-),ti is

required, establishing the need for the extended Kalman

filter to incorporate the nonlinear measurement update. The

data processing algorithm is presented In Figure 1-2.

..- , .. .-. ..



Except for the need to calculate the linear and nonlinear

intensity functions H(t i) and h[4(ti-),ti] the algorithm is

very similar to the previous one. Due to the attractive

characteristics of the linear Kalman filter/correlator, the

extended Kalman filter is not developed In this effort.

Filter development can be found In (2,7,8,10,14,161.

r
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II. MULTIPLE MODEL ADAPTIVE FILTERING

To achieve a high level of performance in a single

Kalman filter tracker, it would be necessary to match the

uncertain parameters of the dynamics model to the dynamics

of the target. Since the range of parameters which provides

optimal performance is continuous, it is necessary to

discretize the parameter space to keep the algorithm

tractable. For a target which displays n significantly

different discrete sets of characteristic dynamics, no one

vector of parameters, a, is adequate. It is then desirable

to match the kth possible parameter vector value ak, to the

kth target dynamic characteristic, to achieve maximum

performance. The multiple model adaptive filter (MMAF)

consists of a bank of n independent Kalman filters processed

in parallel. Each filter Is "tuned" for a discrete

characteristic target dynamics by the appropriate ak- At

each sample time, the residuals of all filters are used to

calculate conditional probabilities identifying which filter

has the highest probability of the best performance: the

probability that a assumes the value of ak, conditioned on

the observed measurement history. This conditional

probability is called the hypothesis conditional probability

pk(ti). The MMAF structure is presented in Figure 2-1.

-14-
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This chapter heuristically presents the MMAF techniques

Implemented In this study. Rigorous mathematical

developments are presented in references [4,6,161.

2.1 BAYESIAN MULTIPLE MODEL ADAPTIVE FILTERING

The Bayesian MMAF estimation consists of probabilistic]

weighting of all n filters using the hypothesis conditional

probability Pk(tj). This probability Is determined

recursively at each sample period, for each of the n

filters. The recursion is developed In (4,6,10,14,161, for

the kth filter as:

Pj(tj) fz(t ):a,Z(t )(Zilak,ZlI) Pk(ti-I (2-1)

E fz(t ):a,Z(t )(zllaj,ZI-I) " Pj(tl-I )  ..

where
r

exp{ •)"-.
fz(ti):a,Z(t l_)lzl:ak,_-) (2-2)

_ _ _ (2w)ml21Ak(ti)l11/2_"",.

= -1/2 rkT(ti)Ak-l(ti)rk(ti) (2-3)

k= dk(ti)?k(ti-)HkT(ti) + Rk(tI) (2-4)

n

j(t) = pknti) (2-5)
k=1

and
Ak = the parameter value assumed in the kth filter

Wk(t) = the kth filter residual, [z(t1) - Hk(ti k(ti-)I

-16-



~L

As can be seen from Equation (2-1), pk(ti) is the ratio

of two products. The numerator is the kth filter's product

of its previous hypothesis probability and the conditional

probability density of the current measurement given the kth

filter's assumed parameter value and the previous

measurement history. The denominator is the sum of the same

products for all n filters. When the kth filter is the best

match for the current target dynamics, that filter will

produce the smallest squared residual relative to the

filter-computed residual covariance of the n filters, i.e.

the smallest quadratic in Equation (2-3). The smaller

residuals will cause Equation (2-3) to become a smaller

negative quantity, causing Equation (2-2) to be larger for

the kth filter than for the other n-I filters. The ratio

then formed by Equation (2-i) will be the largest for the

kth filter, causing its probability to converge to the

largest value.

As can be seen in Figure 2-1, each of the n filters

processes its own estimates and residuals in parallel. The

recursion is then run at each sample time and a pk(ti) for

each filter assigned. Equation (2-5) is used to determine

the MMAF weighted state estimate.

As previously stated, the n filters are each based on a .

model representing a discrete dynamic uncertainty

significantly different from the other models. It is

assumed that the filter which represents the closest to the

-. 17
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true target dynamics will produce significantly smaller

residuals relative to the filter-computed covariance than

the mismatched filters. By this mechanism, Equation (2-i)

will produce the heaviest weightings for the best filter.

In order for a significant difference in residuals to be

realized, each filter must be specifically tuned for best

performance against a discrete target trajectory that

matches its internal dynamics model. The common practice of

adding pseudo-noise to compensate for linear model

inadequacies in single Kalman filter applications should be

avoided, since it tends to blur the distinctions between the

estimates (and residuals) based on different models.

In addition, the calculated probabilities should have

artificial lower bounds enforced (6]. This is to prevent

the mismatched filter's pk(ti) values from converging to

zero. Once a filter Pk is allowed to reach zero, it will

remain zero for all time; likewise reaching very small

values results in great difficulty Increasing that Pk via

Equation (2-1). This effectively removes that filter from

the bank. The loss of a filter could significantly affect

the MMAF future performance in the event that the target's

future dynamics would best match that filter's dynamics

model. A lower bound of .001 was established by Loving (41

for this application and will be continued in this effort.

It is noted that a larger Pk lower bound allows for the

faster transition to a filter with residuals that Indicate

-18-



that a heavier Pk is appropriate. However, this faster

transition is at the expence of an inappropriatley higher

weight on "incorrect" filters in steady state, reducing MMAF

performance.-

2.2 MAXIMUM A POSTERIORI ADAPTIVE FILTERING

The maximum a posteriori (MAP) multiple model state

estimator was implemented by Loving (41. The MAP filter

consists of a bank of independent Kalman filters as in the

Bayesian filter. The residuals from all filters running in

parallel are used to calculate pk(ti) as shown in Section

2.1. However, unlike the Bayesian MMAF state estimate of

Equation (2-5), the MAP adaptive estimate is taken from the

one elemental filter with the highest pk(ti). This best

filter is used on a sample by sample basis until another

filter is id:ntified as having the highest pk(ti). This is

as opposed to the Bayesian MMAF, which is the optimally

weighted average of all elemental filters, i.e. the

conditional mean rather than the conditional mode. The MAP

filter was Investigated with expectations of faster response

to a changing target dynamics. Since no influence from

mismatched filters are included in the MAP estimate,

(provided that the Pk(ti) computation selects the "right'

filter), higher performance against *design point"

trajectories was expected. On the negative side, the MAP

-19-
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was expected to realize reduced performance against target

trajectories between design points since it does not blend

elemental filter results togather. Since computational

loading limits the number of discrete dynamics

uncertainties, no one filter in the bank may be a good match

to the true target behavior, and coarse discretization would

be expected to degrade performance of the MAP filter more

than the Bayesian form of the filter. Results obtained by

Loving [4] showed that no significant performance advantage

was achieved by either approach.

2.3 IMPLEMENTATION OF THE MULTIPLE MODEL ALGORITHM

The MMAF for this effort consists of a bank of three

elemental filters. By varying the filter's dynamics

correlation time, rDF, and the dynamics driving noise

strength, QDF, used to model the target acceleration, the

elemental filters are independently tuned for three tracking

scenarios. TDF and QDF are defined precisely in Chapter 4.

The first filter is tuned for a benign target

trajectory with the "small" FOV. Each of the 8 x 8 pixels

in the FOV is 20 by 20 micro-radians. The second filter is

tuned for a highly manuevering target, pulling ± 20 g's. The

assumed trajectories for tuning are defined In detail in -

Chapter 3. The second filter uses the "larger" FOV in which

each pixel in the 8 x 8 array is 60 micro-radians on each

-20-
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side. The large field of view allows the tracker to

maintain lock while tracking high g-maneuvering, where the

larger errors would have caused the target image to be off

the small FOV. The third filter is tuned for a 10

g-maneuvering target. It uses the small field of view as

with the first elemental filter, since experience shows that

tracking errors for this scenerlo are small enough to

maintain the Image on the small FOV. The filter algorithm

and tuning is further discussed in Chapter 4.

2.4 SUMMARY

This chapter has presented a heuristic discussion of

multiple model adaptive filtering (MMAF). The purpose of

this discussion is to present the motivation for MMAF in

this application, as well as the recursion used in the

filter implementation. r

- 1
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III. TRUTH MODEL

3.1 INTRODUCTION

The truth model is the simulation of the Oreal worldn.

It provides the standard against which the filter's

performance can be evaluated. For this reason it must model

the actual processes of interest as closely as possible.

The processes of interest in this study are atmospheric

Jitter, target dynamics, target shape effects, and

background and internal FLIR noises. These processes are

Important as they affect the filter's perception of target

motion. Sensor vibrational effects can be important as

additional noise In the FLIR measurement model. This effect

however is not considered In this study, since a ground

based tracker is assumed.

The FLIR sensor measurement provides average intensity

values seen in individual picture elements (pixels),

Indicating apparent target position at a given time. The . -

term apparent is used here to denote the corrupting effects

of the atmospheric distortion. As the radiation from the

target passes through the atmosphere, it's phase front is

distorted, providing a translational shift in the apparent

target centroid seen In the FLIR image plane. For a target

whose centroid position has changed the amount xD , due to

dynamics, the apparent motion of the centroid as seen by the

-22-
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FLIR sensor Is

XC SD + XA (3-1)

where

xc = x-coordinate of target centroid observed by FLIR
sensor;

xD = x-coordinate of the change in position due to
target dynamics;

'A = x-coordinate of the apparent change in centroid due
to atmospherics;

and similarly for y. This apparent target position Is

measured in units of pixels on the FLIR image plane.

The truth model propagates the dynamics and atmospherics

m * states to define the true target states as well as true

apparent position. This chapter discusses the measurement

and target models which make up the truth model for the

simulation. This discussion includes: the target state space

model, the various coordinate frames, multiple hotspot

target intensity functions, inertial target trajectories,

and noise effects.

3.2 TRUTH STATE MODEL

The target motion in the truth model is described by the

linear stochastic differential equation (5]:

-23-
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i(t) = F x(t) + B u(t) + G w(t) (3-2)

where x(t) is the state vector made up of target position

and atmospheric states. The B i(t) term is a deterministic

input which consists of velocity components to direct the

target along the specified trajectory. The G w(t) term

contains the white noise uncertainty, which is applied to

the atmospheric state equations.

The solution to the governing Equation (3-2), for a

sample data system is:

Z(ti+l) = 1(ti+i,ti) X(ti) + Bd 2d(ti) + Gd d(ti) (3-3)

where the subscript d denotes the discrete time

0@ representation of the appropriate term [5] and !(ti+i,ti)

Is the state transition matrix associated with F in Equation

(3-2). The discrete model of the Input, ud(ti), In Equation

(3-3) is held constant over a sample peroid. Additional

equivalent discrete versions of terms in Equation (3-2) are

defined as:

ti4.1

9d = 5(ti+l,) B('r) dr

ti

-24-
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and wd has covariance

ti.'-

2d(ti) = (ti+ 1,1 G(-r) Q(a) G(,.)T 1(ti+j,,r) dr

ti

where Q(t) is the strength of w(t).

The state vector is made up of two positions, xT and YT

and six atmospheric states, In the FLIR plane. Consider a

spherical reference frame with the FLIR sensor at the

origin. At any time the FLIR FOV is assumed to be a plane

tangent to a sphere with radius equal to the sensor range to

the target. This a - A plane is perpendicular to the line

of sight for all time. Assuming the target, i.e. a -

plane, is far away from the FLIR sensor, the FLIR azimuth

angle, a, and elevation angle, i, can be considered the

linear translational coordinates x and y of the target

centrold in the FLIR (a - 0) plane. This convention allows

for truth model states Independent of FLIR pointing. .

The deterministic portion of the dynamics consists of

the velocities input in the B u(t) term. The velocities are

input relative to the FLIR plane and are of the form for the

sampled data system

PdR(ti) = 1-t [a(tj) i(tj)]T  (3-4)

The deterministic portion of the state propagation is then:

-25-
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=yt~[[( + t (3-5)£(ti+ i) 0 1 Y(t i ) "-'':-

This particular form of generating deterministic truth model

target trajectories was choosen to be consistant with

standard state space modeling, and to allow the option of

additional driving noise to produce stochastic process truth

model trajectories instead of purely deterministic ones.

The atmospherics developed by Mercier (9,12], are

modeled as a third order Gauss Markov process in both the x

and y FLIR directions. In the x-direction, the shaping

filter is:

where

wA = unit strength white Gaussian noiseL

k = system gain, adjusted for desired
atmospheric RMS value

A = break frequency; 14.14 rads/sec

B = break frequency; 659.5 rads/sec

xA = output of shaping filter

The y direction shaping filter is identical. The governing
atmospherics stochastic differential equation can be written
as

iA(t) = FA At) + 9A HA(t) (3-6)

where

-26-
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A(t) the atmospheric state vector

EA = atmospheric system plant matrix

9A = atmospheric noise input matrix

EA(t) = vector of white Gaussian noise inputs with
statistics

E(LA(t)} = 0 ST

E{!A(t) AT(t + r)) = QA~t) 5( r) "

the solution of which is, for a sample data system:

!A(ti+l) = !A(ti+lti) KA(ti) + GAd UAd(ti) (3-7)

where

!A(ti+l,ti) = atmospheric state transition matrix
associated with FA

9Ad = @A

The discrete time white Gaussian noise wAd(ti), is of the
form

E(EAd(ti)) 0

E(Ad(ti)!AdT(tj)) = ai

and c QAd(tij c QAd(ti) T =QAd(ti)

where /Adl(t) represents the Cholesky square

root of QAd(ti) (51

Here again the d subscript denotes the discrete equivalent

of a continious time vector process (51.
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The total system is then formed by augmenting the target

dynamics states and atmospherics states. The target and

atmospherics augmented state propagation is then of the

form:

x(ti+ I ) = 1(ti+it i) x(t i) + 3Ud(ti)
+ !Ad(ti) (3-8)

-AdJ

where

_(t i ) = augmented state vector (two dynamic states
and six atmospheric)

(tI+I,t I ) = augmented 8x8 state transition matrix

The state transition matrix as developed by Harnly & Jensen
12,7,8J is

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 e-At 0 0 0 0 0

1(ti+iti) = 0 0 0 e-BAtAte "B Z t 0 0 0
0 0 0 0 e-B A t 0 0 0
0 0 0 0 0 e -At 0 0
0 0 0 0 0 0 e- Bt At e - t
o 0 0 0 0 0 0 e-BAt

3.3 SIMULATION SPACE MODEL

Realistic target trajectories are first simulated in

three dimensional Inertial space. The trajectories are

then projected into the FLIR image plane. In order to

describe the three dimensional motion in the Inertial plane

relative to the FLIR plane, a system of coordinate frames

and transformations must be defined.

-28-
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3.3.1 COORDINATE FRAMES

Target Frame - The origin is the target's center of

mass. The ev axis lies along the velocity vector.

Perpendicular to the first, the second axis, epv points out

the right side of the target. The eppv axis completes the

right handed coordinate frame pointing out the underside of

the fuselage. (v: along velocity vector, pv: perpendicular

to velocity vector, ppv: perpendicular to both)

Inertial Frame - The origin is the position of the FUAR

sensor. The e1 basis vector is the zero azimuth line in

the plane tangent to the earth's surface. The orientation

of the ex vector in space is arbitrary; it is assumed to

point toward the local North for simulation purposes.

Perpendicular to ex, the ez vector is the 90 degree azimuth

line. The ey basis vector is in the inertial "upm direction,

opposite to the gravitational field for a flat Earth

approximation. The elevation angle, a, is measured up from

the xi-z I plane.

a-d-r Frame - The origin is also the center of mass of

the target. The er basis vector is coincident with the true

line of sight from the sensor to the target. The a - it

plane is defined by the unit vectors e., Ip which are

rotated from the inertial frame ex and ey axis by the amount

of the azimuth angle, a, and elevation angle IS.
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a-A(FLIR) Plane - As was stated previously, the target

position is propagated by Equation (3-7) in the a-11 plane.

This plane Is the FLIR image plane in which the sensor makes

its measurements. By assuming small azimuth and elevation

angles, a and B can be considered the linear translational

coordinates x and y. The ey coordinate basis vector Is

down, with the ex vector to the right, as seen from looking

through the FLIR plane to see the target image. This choice

of coordinates allows for a right handed system with the

distance to target from the FLIR plane measured positive

away from the sensor. The x and y coordinates are measured

relative to the center of the FLIR plane.

Absolute a-B-r frame - This frame is similar to the

at-0-r with the exception that the absolute frame is fixed in

inertial space at the Initial a-A-r coordinates of the

target. This coordinate system uses the true angular arc of

the pixels to define target and sensor FOV positions. This

frame is used in the simulation to allow for the generation

of the target and sensor variables by the truth model.

3.3.2 VELOCITY PROJECTION ONTO THE FLIR PLANE. The true

target trajectory Is defined in inertial space. The

deterministic azimuth velocity, a(t), and elevation velocity

A(t i ) are derived from the Inertial target velocities. As

presented in Loving (4], the inertial velocities are

projected Into the FLIR image plane based on the geometry in

-30-
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Figure 3-1 where:

target

r
senso

X

rh

-I

Figure 3-1 Target/Inertial Frame Geometry

il Xi', jI =Inertial axes

r =range from tracker origin to target

r= horizontal range

y= target Inertial velocity

a =azimuth angular displacement

4=elevation angular displacement

The geometry associated with azimuth direction is

shown In Figure 3-2:

xX
-azimuth

z

Figure 3-2. Azimuth Geometry
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From Figure 3-2,

Z1 (t) (rads) (3-9)
a(t) =tan-I

and so

Z() x(t)i1 -z 1 (t)i1 (t) (rads/sec) (3-10)

z1
2 (t) + X1

2 (t)

The azimuth velocity from Equation (3-10) is In rads/sec,

which must be converted to pixels/sec by dividing by 20 x

10-6 rads/pixel 12,7,81.

Similarly, Figure 3-3 illustrates the geometry involved in

computing the elevation velocity.

r

Figure 3-3. Elevation Geometry

where

r(t) =range C x1
2(t) + y,2 (t) + z,2Ct)1 1 2

rh(t) =horizontal range = x1
2(t) + z,2 (t)11 /2

and
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Yr(t) (rads) (3-11)
" (t) = tan - 1

rh(t)

Differentiating Equation (3-11) yields:

rh(t)Yl(t) - yl(t)rh(t) (rads/sec) (3-12)
( ) = .....__ _ __ __ _ __ _

r 2 (t)

where, from the previous rh(t) expression it can be seen
that

KI(t)zllt) + zi(tlZJ(t)" :
rh(t) = (3-13)

rh(t)

Once again, the velocity must be converted to pixels/sec.

Equations (3-10) and (3-12) provide the desired

deterministic inputs in the FLIR plane. These velocities

are Included in Equation (3-8) to generate desired true

target motion.

3.4 MEASUREMENT MODEL

The FLIR sensor measures the target intensity function

projected onto the FLIR Image plane. The target Intensity

function is made up of infra-red radiation from the target

and is corrupted by background and sensor noises. At close

ranges targets can be well modeled as the sum of bivariate

Gaussian functions with elliptical contours (2,7,81. Figure

3-4 shows the Intensity function for a three hot spot target
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on the FLIR image plane.
CENTROID OF

APPARENT TARGET
ECUJAL-INTENSITY INTENSITY PROFILE

CONTOURS

X PIACKM

-4

L 8-SY-I ARRAY OF PIXELS

Figure 3-4. Apparent Target Intensity Pattern on FLUR
Image Plane

The target used in this effort Is composed of three r

Identically distributed hotspots, each of which Is described

by the following Intensity function

I(Z9YDzpeak(t)DYpeak(t)J I max eIp(-.5E(Xlxpeak)(Y-Ypeak))

1P8) (1X-peak)(Y-ypeak) ]T) (3-14)

where

'max =maximum intensity of hotspot

XpeakDYpeak =coordinates of the peak intensity of

the hotspot

-34-



L

= matrix whose elgenvalues are rv2 and r v2 which are
the dispersions of the elliptical cons'ant intensity
contours in the target frame, and whose eigenvectors
define the orientation of the principle axes.

The x- and y- coordinates in this function are

calculated In pixels relative to the center of the FOV.

The location of the hotspots on the target frame are

constant. For this simulation the multiple hotspots are

7 arranged as in Figure 3-5.

e

--pv"-

Mass Cent-roid

I • .

Figure 3-5. Hot Spot Distribution

The hotspot coordinates are:

hotspot ev tpv
I i.meter 0
2 0. .5 meters

0 3 0. -.5 meters

It is assumed that the velocity vector points out the

nose of the target for all time. Additionally It Is assumed

that the semi-major axis of each intensity function Is

aligned with the velocity vector. This implies that the

target's angle of attack and sideslip angle are negligible
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--- for all time. Although this is not realistic, it simplifies

the simulation of the target dynamics, without degradation

of the performance analysis.

The intensity measurement seen by each pixel in the 8 x

8 array Is the sum of each hotspot's contribution, and the

contribution from noise, both background and FLIR. The

measurement value for pixel kl (i.e. the kth row and lth

column) is:

M
Zkl(ti) = {1/Ap ImxIypKpeakm(ti),Ypeakm(ti)ldxdy) +

pixel kl

+ Vkl(ti) (3-15)

where

- * M = number of hotspots

in(*] = intensity function of the mth hotspot of M total
hotspots

zkl(ti) output of the klth pixel (kth row, lth column) at
time ti; the average intensity at that pixel
as sensed by a detector in the FLIR image
plane.

Ap = area of one pixel

(x,y) = coordinates of any point within the kith pixel

(xpeaklYpeakm ) = location of the peak of the mth
intensity function at ti

I. vkl(ti) = additive FLIR and background noises for
the klth pixel
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3.5 _ARG_1MAGE PROJECTION ONTO THE FLIR IMAGE PLANE

During the simulation, the true target position is

propagated in three dimensional space. This target position

must be projected onto the two dimensional FLIR plane in x

and y coordinates, along with an associated image on the

FLIR plane. Although the image hotspots do not vary with

respect to the target frame, they do change orientation with

respect to the FLIR plane. In addition, any target motion

orthogonal to the FLIR plane must be translated into a size

change of the target image as the target's range is changed.

To accomplish this, a reference image is defined and

variation of this image produced by the following

relationships based on the geometry of Figure 3-6.

e
-r

V,

Target

adt) 66t

e a

I LLOS

* Tracker

Figure 3-6
Image Projection Geometry

The reference image is oriented to correspond to the
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largest planform at a specified range. Changes in

sensor/target geometry and range are referenced against this

Image to create the corresponding current target image.

The current image is then defined by:

Wpv = WpvoPo/P

Wv = (po/p)[Wpvo + cos 8 (rvo-rpv)]

= 'pv(l+[(- i LOS)/XI)(AR - 1])

where wvo, rpvo = the dispersion of the target along the major
and minor axes of the radiating
ellipsoid, i.e., axes along and
perpendicular to the velocity vector,
respectively, for the reference Image

qvVrpv = the current dispersions of the target image

pc = reference range from sensor to the target

p = current range from sensor to the target

v1= inertial velocity vector

Y 1 LOS = projection of v1 onto the a - I plane,
the plane perpendicular to the line of
sight to the target -

b

8 = angle between the inertial velocity
vector, vI, and the a - A plane, as
shown in Figure 3-6

AR = wvolpvo = maximum aspect ratio of the
hot-spot reference Image

The orientation of the hotspots on the FLIR image plane

can be obtained from transforming the coordinates from the

target frame to the a - A plane. From the Figure 3-6 it

Is seen that
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cos B = I(t)I{v 4 LOS]

sinO = i(t)/(v .11 LOS

where v L os = [ (t)2 + 1(t) 2 ]1 / 2

The transformation is then accomplished via:

= = ~Coss -sin$~[K( sine cossJ [YJ target frame

= A x (3-16)

The dispersion matrix is transformed using

= p E AT

As seen in Equation (3-14), it is desirable to have ;
the more convenient transformation to be used is then: * -

- [-IAT1 (3-17)

3.6 TARGET TRAJECTORIES

To evaluate algorithm performance fully, it is necessary

to evaluate the tracker against several different realistic

target trajectories. This section presents the trajectories

currently available in the simulation. These trajectories

are designed to provide realistic target behavior with

fairly simple models. The basic equations are described in

detail by Millner [13].
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Tralectory one - This trajectory is a constant-course,

straight-and-level fly-by. The inertial velocity lies in

the xI - yI plane and is constant throughout the simulation.

The initial inertial coordinates x1o and z1o can be seen in

Figure 3-7. The value of z, as seen here and Figure 3-8

(for trajectory two) is the parameter varied to determine

range sensitivity in Section 6.5.

Y_

-xo

Figure 3-7 Trajectory One

Traiectory two - This trajectory simulates a constant-g

pull-up. The target performs a trajectory one maneuver until

t = 2.0 seconds, allowing the filter to obtain good state

estimates before the maneuver is initiated. At time > 2.0

seconds the target performs a constant speed, constant

pitch-rate pull-up parallel to the xi-yl plane. The

maneuver is initiated by instantaneously applying the full

maneuver pitch rate as a step change input. Although this

creates an artificially harsh maneuver, it allows for easy

-40-
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implementation In the simulation. Adaquate tracking

performance against this trajectory should provide good

performance against the more benign Oreal worldn

trajectories. Figure 3-8 presents the general trajectory /

two plot. The nominal time for the maneuver to begin Is

shown as t=2 seconds into the simulation .The minimum

range cross over point (i.e. where xI=O) is shown. The

nominal time for minimun range crossover in this study is

t=5 seconds.

XIX

Figure 3-8 Trajectory Two

Traiectory three - This trajectory contains two maneuver

changes. Trajectory two Is flown until t =3.5 seconds, at

which time pitch rate Is Instantaneously set to zero. Note

again this Is an artificially harsh simulated maneuver. The

inertial velocity vector of the target Is maintained through

the remainder of the simulation.
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• . Traiectory four - This trajectory parallel to the same as

trajectory two, except the maneuver takes place parallel to

the xi-z I plane, with the "pull-up" about the YI- axis,

rather than the zI - axis. This maneuver allows for filter

evaluation of target motion out of the FLIR plane. In this

trajectory the target image changes more dramatically than

in the other trajectories.

3.7 SPATIALLY CORRELATED BACKGROUND NOISE

The noise term Vkl(t i) in Equation (3-15) is the

spatially correlated background noise. Research conducted

by Harnly and Jensen [2,7,8] found this correlation distance

to be about two pixels. This was modeled by maintaining

non-zero correlation coefficients between each pixel and its

two closet neighbors. In the 8 x 8 tracking window (FLIR

plane) the 64 pixel elements make up a 64-element vector,

and thus the spatially correlated noise can be modeled as:

,..' . v(ti) =! _'(t I )

where v'(t 1) = a 64 - dimensional vector of Independent
discrete-time white Gaussian noise processes
with statistics:

, E(v'(ti))=

E( '(ti)v(tj)} = =j

The process v(ti) has covariance:

"'. E(X(ti)(T(tj)) = R
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where R Is the 64 x 64 matrix of correlation coefficients.
The detailed development of the spatially correlated noise

using non-zero spatial correlation for the nearest neighbor

pixels is presented in Harnly and Jensen [2,7,81 and

Kozemchak [3).

3.8 SUMMARY

This chapter presents the truth model representation of

the real world used in the computer simulation to evaluate

the tracker's performance. Truth model state propagation in

inertial space and the transformations required to project

target motion onto the FLIR image plane are provided. In

*0 addition, the measurement model Is developed, including the

measurement noise statistics.
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IV. TRACKING ALGORITHM

4.1 Introduction

The linear Kalman filter/correlator is the basic element

In the KNAF discussed in Chapter 2. This chapter describes

the filter/correlator as It is applied to the MMAF in this

effort. Filter propagation, measurement update, template

creation and correlation are presented. Additionally, the

FUIR sensor pointing controller development used to model

control system lags is developed In this chapter.

4.2 State Space Model

The linear Kalman filter uses an eight-dimensional state

space model. The filter states are target position (iD,

YD)o velocity (v,, vy) , acceleration (ax, aye and

atmospheric jitter position (KA YAps In the FLIR Image

plane. The atmospheric model used here Is first order, as

opposed to the third order truth model discussed In Chapter

3. The model Is reduced in order by neglecting the high

frequency double pole. In addition, the target acceleration

and atmospherics position jitter are modeled as first order

Gauss-Markov processes.
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The filter structure is identical to that presented in

Loving (41.

XF = ExD YD Vx Vy ax ay xA YAIT (4-1)

The state equations are

iD= v

iD Vy

vx = ax

vy =ay
(4-2)

a x = (-I/,.DF)ax + WDx

a= (-i/TDF)ay + WDy

iA = (-I/'AF)XA + WAx

'A = (-I/'rAF)YA + WAY

where

TDF = correlation time for target acceleration

'AF = correlation time for atmospheric jitter

wDx, wDy, WAx, wAy = zero-mean white Gaussian noise processes
whose strengths depend on tuning
results

Identical, independent models are used to represent the

states in the x- and y-directions of the FLIR Image plane.

The above relationships can be written as a state vector
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differential equation in standard form. It is noted that

no deterministic control term, Bd 2(ti), Is included In

Equation (4-2). The control application will be discused In

Section 4.4.

iF(t) F F KF(t) + GF EF(t) (4-2)

EF The time Invariant system plant matrix
which is:

0 0 1 0 0 0 0 0
o 0 0 1 0 0 0 0
o 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

EF= 0 0 0 0 1/rF0 0 0

o 0 0 0 0 0 i/rAF 0
L o 0 0 0 0 0 1i/TAF

=F the time invariant system noise output matrix

0 0 0 0
o 0 0 0
o 0 0 0

9= 0 0 0 0
1 0 0 0

o 1 0 0
0 0 1 0
LO 0 0

NF(t) CVDZ, WDV, WAx, wA~ ]T, the noise vector of
mutual iIndependent zero-mean white
Gaussian noise processes with:

E(NF(t)wF T(t + r0) Q F 8(,r)
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F2W 2 DF/rDF 0 0 0
0 2F2 DF/rDF 0 0

2F[ 0 0 2W2 AF /rAF 0rA/1~
0 0 02FAF/F

'DF =target acceleration variance and mean squared value

w2 AF =atmospheric jitter position offset variance and
mean squared value

The equivalent discrete time equation of Equation (4-3)
is (51:

11F(ti+1) = IF(tI+1,ti) AIF(ti) + %rg~'NFd(ti) (4-3)

where

XF(tt) =filter state vector at time ti

!!Fd(ti) =discrete-time zero-mean white Gaussian noise
of covariance =I

The state transition matrix Is (161:

10 0 At 0 i 0 0 0

0 0 1 0 J2 0 0 0
-IF(ti+i,ti)= 0 0 0 1 0 J2 0 0

o 0 0 0 J3 0 0 0
o 0 0 0 0 J3 0 0
o 0 0 0 0 0 J4 0

LO 0 0 0 0 0 0 J4_

where
J1 = TDp(4t-'DF(l-exp(-At/TrDF))]

J2 = TrDF[I-exp(-LAt/PDF)]

J3 = eip(-At/TrDF)

J4 = eip(-LAt/-rAF)

At= tj+1 t-
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The growth In uncertainty due to dynamic driving noise Is
described by 113):

0 Q13 5 0 0 0

0 Qii 0 Q13  0 Q15 0 0

G3 0 Q33 0 35 0 0 0
9Fd 0 Q1 3  0 Q33 0 Q35 0 0

Q15 0 Q35 0 Q55 0 0 0

0~~ 09 00 Q 7 7

where

QII = 'DF 2  (2'TDF~Lt 3 /3] - 2TrDF 2 At 2 j - (4 TjDF 3 At eip(-At/qrDF)]

+ 2 rDF 3 At] - (DF 4 exp(-2t/FDF)J + 'D

= D 2 (mrDFAt 2I + (2 rDF 2 AtCP-tlFJ+ (TrDF 3 ]

- 2 rDF 3 exp(-At/TrDF)] - [2 rFDF 2At]

+ IrDF3  -icp(-2&t/1DF)l -'

Q1 rDF2 (-2 TrDp~t exp(-At/'rDF)] + DF2

- rDF 2 exp(-2At/'rDF)l

Q3 FDF 2 (2 'FDFAtI - 3 'rDF2  + (4 rD exp(-At/'FDF)l

TDF ezp(Mt/PrDF)I

Q35 w DF 2 (TrDF E 2 -rDF exp(-At/TrDF)J + (TrDF exp(-2At/TrDF)l)

Q5 FDF 2 (1 -exp(-2At/'TDF))

Q77 =FAF 
2 (1 -exp(-2,6t/TrAF))

Using the terms defined above, the state estimate and

covariance are propagated as follows:
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.(tt+l-) =IF(ti+l,ti) i(ti + ) (4-5)

E(ti+l-) = IF(ti+l,ti)E(ti+)!FT(ti+I,ti) + Fd (4-6)

where
• ....

_(ti + )  = the state estimate after update at time t i

4(ti+j-) = the state estimate prior to update at time ti+ 1

P(ti+) = the conditional covariance matrix after update at
time tj

P(ti+-)= the conditional covariance matrix prior to
update at time ti+ i

As is noted from Equation (4-5) no control term is incuded in

the state propagation equation. This is due the mannor in

which the control is applied. The FLIR sensor is pointed at

the filter's propagated position estimate prior to the

measurment being taken (assuming an ideal controller). The

measurments and filter states are then relative to the

center of the FOV. Control application is discussed in

detail in Section 4.4.

4.3 MEASUREMENT MODEL

The linear Kalman filter algorithm uses pseudo-

measurements to allow the linear filter structure. As

discussed in [4,10,14,161, the need for implementation of

the extended Kalman filter was due to the non-linear

measurements obtained from the FLIR sensor. By providing x

and y offsets from an enhanced correlator to the filter as

pseudo-measurements, a linear Kalman filter structure Is
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appropriate. The development in this section assumes an

ideal controller as discussed in Section 1.2.

4.3.1 FILTER PROCESSING IN THE FOURIER DOMAIN

Many of the operations required to perform the target

image estimation are more easily accomplished in the Fourier

domain. Additionally, Fourier transforms lend themselves

well to optical implementation, reducing the computer

resources required. For these reasons the discrete

two-dimensional Fourier transform (DFT) is used on

information in the FLIR image plane. The filter processing

in the Fourier domain is depicted In Figure 1-1. A rigorous

mathematical description of the Fourier transforms as

applied to the filter algorithm is presented in

[4,10,14,16).

4.3.1.1 TARGET IMAGE ESTIMATION (TEMPLATE)

As was discussed in Section 1.2.1, the linear Kalman

filter pseudo-measurements are provided by correlating the

expected target image with that obtained during the current

sensor measurement. To accomplish this, the algorithm

estimates the target image by creating a template composed

of an average of previous target intensity profiles. To
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incorporate the latest Intensity profile into this average,

the current Image must first be centered on the FLIR image

plane. This Is required to overlay the current intensity

function on the template intensity function which is

maintained at the center of the FLIR FOV. This is

accomplished using the Fourier transform shifting property.

The target intensity function is shifted on the FLIR image

plane, relative to the center of the FOV, by the amount;

Xshift(ti +) AD(ti + ) + A(t)4-7)

and similarly In the y FLIR direction. The values of AD(ti +)

and xA(ti+) are obtained from the Kalman filter state

estimates. With the current image intensity function

overlayed on the template function, the current image Is

incorporated into the template by exponential smoothing. As

previously stated, it Is assumed here that measurement

corruption and background noises will vary more rapidly than

target intensity profiles from sample to sample. This

assumption is exploited by the use of an exponential

smoothing algorithm. Exponential smoothing approximates a

true finite memory average while requiring only storage of

the current template. The equation Is

(t i) = a (t) + (i-a) A(ti_1 ) (4-8)

y(ti) = current "average" or smoothed value

X(ti) = current data frame

-51-
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(ti_ 1 ) = previous average or smoothed value

a = smoothing constant, 0 < a < 1

The appropriate value of a is dependent on the target

dynamics. A rapidly changing target requires a heavier

weighting of more recent frames, thus a higher value of a.

Based on previous studies by Sulzu (16] and Loving [4], the

value of a = .1 is used for this effort.

4.3.1.2 PSEUDO-MEASUREMENTS BY ENHANCED CORRELATION

The pseudo-measurements used by the linear Kalman filter

are linear x and y FLIR-plane offsets of the current target

image, relative to the center of the FLIR FOV. These

offsets are determined by the enhanced correlator. The

correlator is considered enhanced since it compares current

intensity functions with a template, as opposed to the

previous measurement intensity function. The template

centrold is maintained at the center of the FLIR's FOV. The

cross correlation is performed by taking the inverse Fourier

transform (IFFT) of the relationship of Equation (4-9)

F[s(x,y)] = G(fx1 fy) => transform of FLIR data

Fti(x,y)1 = L(fx,fy) => transform of template

lg(x,y) * 1(x,y)] G(fxfy) x L*(fx,fy) (4-9)
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where

[S(x,y) * l(z,y)] = cross correlation
of the g(x,y) and l(x,y)

L*(fx,fy) = complex conjugate of the Fourier transform of
the sequence l(x,y)

The correlation between the template and the current target
Image produces a measurement which can be written as

Xoffset(ti) = (XDt(t i) + XAt(ti)] - "Dmmaf(ti-) + v(t i )
(4-10)

where

xDt(ti) = the true x position of the target centroid

XAt(ti) = the true atmospheric distortion in the x coordinate

v(t i) = the measurement noise described in Section 4.3.2

xDmmaf(ti ) = is the multiple model adaptive filter
x coordinate position due to dynamics

where the filter states are in absolute FLIR coordinates.

Equation (4-10) assumes an ideal controller/pointer: the

center of the FOV is positioned at hDmmaf(ti-) after control

is applied. Equation (4-10) can be written as

Xoffset(ti) = XDt(tI) + xAt(ti) + v(t I) (4-i)

the absolute coordinate frame discussed in Chapter 3 to the

current center of the FOV. The target image position is

then measured relative to the center of the FOV, established

by the current pointing of the sensor, through the action of

the controller.
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Equation (4-11) is in the form of a standard Kalman

filter measurement equation;

Z(t i) = H(t I) x(t i) + v(t i) (4-12)

which Is discussed in the next section.

4.3.2 KALMAN FILTER UPDATE EQUATIONS

The linear Kalman filter update equations are of the

standard form as presented In [4,51. The appropriate

measurement equation is

z(ti= HF(ti) x(t 1) + vF(ti) (4-13)

where

z(ti) = the offset estimate in x- and y-coordinates produced
by the correlator, based on the filter-predicted
centroid location (i.e., the vector sum of the
dynamics and atmospherics states)

AD(ti) + KAC(ti) [VF1(ti.)--

tYAD(ti) + yAc(ti) F2(t 0]

HF 1 0 0 0 0 0 1 010I 0 0 0 00-
00 1

!F(ti) = noise produced by the correlation algorithm with
statistics that were shown empirically to be
(10,13,141:

'i E{VF(ti)} - _

whreE(XF(ti)vF T(tj)) = EF(ti)Siji where
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= 03 .005981

The standard Kalman filter update equations apply:

K(ti)= PF(ti-)HFTEHFPF(ti-)HFT + RFJ - 1  (4-14)

!F(ti + ) = IF(ti- ) + K(ti)(Z(t i) - HAFF(ti-)) (4-15)

!!F(ti+) = PF(ti-) - K(ti)HFI!(ti-) (4-16)

where all the terms have been previously defined.

4.4 FLIR SENSOR POINTING CONTROLLER

The pointing controller is tasked to position the FLIR

sensor on command to the filter's propogated estimate of the

target's position. This task is ideally to be accomplished

in less than one sample period. However, servo lags

inherent In mechanisms with significant inertia will cause

less than ideal pointing performance. If the filter Is not

aware of this imperfect pointing at the time of a

measurement update, the filter may interpret the offset due

to non-ideal pointing as target motion and provide

inaccurate estimates of future states.

Assume a deterministic first order controller lag of the

following form:

s+a

where the input, a commanded change in pointing position -"--'
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denoted as Sc, is the propogated estimate of the target's

position 4D(ti-). The output, 8, is the actual change in

pointing position of the FLIR sensor. The controller lag is

assumed to model the time response of the controller

algorithm dynamics as well as time lags inherent in the

pointing servo. It is seen by the form of the lag transfer

function that, given a sufficiently long sample period for a

fixed controller time constant, the controller servo would

be able to point the FLIR sensor at the desired position.

However, long sample periods provide less frames of data per

second, which reduces filter performance.

4.4.1 POINTING CONTROLLER IMPLEMENTATION

The pointing command is the change in position on the

FLIR image plane, from the current center of the FOV to the

propagated estimate of the target's position on the FOV.

This command is modeled as a step input in both the x and y

directions of the FLIR plane. In the Laplace domain, the

output for a first order controller with a step input is:

S(s) a

ac(s) s + a
where

&c= controller commanded step change

a = controller time constant
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S = control actually applied

The change in output position attained one sample peroid

after the commanded change of &(ti+ 1) is received at time

ti, is then

(ti+ 1 1 = ScCti+l) I I e-a. t ]  (4-17)

where t is the sample period. The output of Equation

(4-17) is the actual movement of the FLIR sensor in the FLIR

plane. However the filter is unaware of the true FLIR

position, assuming instead that the center of the FOV is

positioned at lDmmaf(ti+l).-

The measurement relative to the FUAR center of view is

then:

S..

z(ti)k = [xDt(ti ) + XAt(ti-) + r(ti)lk-XDmmaf(ti+l-) + Y(ti)
(4-18)

where the states are in absolute FLIR coordinates.

z(ti) k = measurement of the kth filter

XDt(ti-) = position due to true target dynamics

XAt(ti)= value of the true atmospherics jitter state

2Dmmaf(ti+l-) = propagated estimate of the dynamic states
from the MMAF (pointing command)

r(ti) = the error due to controller lags of the kth
filter

The additional offset included In the measurement, r(ti), is

Interpreted by the filter as an error in the propagated

estimate of the states. The filter then adjusts the state
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. .. estimate of the states. The filter then adjusts the state

estimates to account for the "additional error", creating an

actual error in the state estimate.

It should be noted here, that the model used in this

effort simulates a filter with measurments based on

coordinates relative to the FLIR FOV. If a filter based on

absolute FLUR coordinates, as described in Section 3.3.1,

were implemented, an estimate of absolute sensor position

would be required to perform the shift operation used in

template generation.

The controller dynamics could be included in the filter

to provide the filter knowledge of the pointing errors.

This however would be at the expense of additional

computation time. The objective of this study is to analyze

the effects of pointing lags on a filter that assumes there

are none.

b.. .a

4.5 FILTER IMPLEMENTATION

As was discussed in Chapter 2, the MMAF is made up of a

bank of 3 elemental filters. Each filter is tuned for an

independent tracking scenario by varying the dynamics model

correlation time, TDF, and parameter 'bF that determines the

dynamic driving noise -DF (described in Section 4.2), as

well as the FOV.
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The specific parameter values, for each filter, as

established by Loving (4] are presented in Table 4-1:

Table 4-1

Filter Trajectory FOV TDF FDF"
I Benign Small 3.5 1000
2 20 g Large 1.5 2000
3 10 g Small 1.5 1500

The FOV size corresponds to the size of the pixels used In

the filter's FOV.

As was discussed in Section 2.3, a center 8 x 8 pixel

grid is padded by 8 rows and columns of data on all sides,

creating a 24 by 24 pixel matrix for performing the FFT's.

For the small FOV, the center 8 x 8 grid is made up of

pixels 20 micro-rads x 20 mlcro-rads. This inner frame is

padded with noise-corrupted data to reduce the high

frequency effect of edges where the target image "spills

over" the center 8 x 8 array (10,14].
L.

The large FOV is created by taking the 24 x 24 pixel

matrix and using each 3 x 3 block of 20 micro-rads pixel to

form one "large" 60 micro-rad x 60 micro-rad pixel. The

intensity value of the "small" 20 micro-rad pixels are

averaged to establish the intensity of the "large" pixel.

Since the correlation output is in terms of pixels, the

large FOV of variables must be adjusted by a factor of 3 in

the filter algorithm. This is padded with zeros instead of

data when performng the FFT's, since it is assumed that the
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target image is usually contained well within the 24 x 24

array of pixels.

The filter contains a reacquisition cycle to allow

a filter which has lost track to reacquire the target. The

function of the reacquisition cycle is to allow an elemental

filter whose errors are diverging to be brought "back on

line' to be used in the event it would provide an adaquate

"match" to the observed target dynamics. For the Bayesian

HMAF, the divergent filter states reset to a combination of

the non-divergent filter's states. Likewise the covariance

matrix is reset to a combination of the non-divergent

filter's covarlance. The conditional probabilities are left

at current values. For the MAP HMAF, the state and

covariance of any divergent filter are reset to the current

MMAF values.

4.6 SUMMARY

This chapter has presented the linear Kalman

filter/enhanced correlator algorithm as was used in this

effort. The Kalman filter equations consisting of the state

space model for propagation as well as the measurement

update equations have been discussed. The FLIR sensor

pointer/controller development and Implementation has also

been included in this chapter.
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V. ALGORITHM TEST SET-UP

5.1 INTRODUCTION

This chapter presents the evaluation tools for the

investigations made during this effort. The first section

covers the derivation of the tracker error statistics.

The tracker state estimate errors are of primary Intrest

in evaluating the algorithm's performance. The next section

discusses the format of the performance plots which are the

main evaluation tool. The greyscales, discussed In Section

5.4, are used to gain insights into the tracker

characteristics. The tiominal filter parameters are

presented in Section 5.5. The final section presents the

designation code used in the identification of the

performance plots in the appendices.

5.2 TRACKER STATISTICS

The tracker performance statistics were obtained by

means of a Monte Carlo analysis technique. Research

conducted by Harnly and Jensen E2,7,81, Flynn Ell, and

Mercier (9,121, have shown that the sample statistics

corresponding to ten Monte Carlo runs will exhibit

sufficient convergence to the actual error statistics of an

infinite number of runs, that ten run Monte Carlo
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simulations are used throught this research. Tracking

simulations of five and ten seconds real time were A

conducted, generating 150 and 300 frames of data at 30 Hz.

sample rate.

The sample mean errors of the filter estimates are k

calculated as follows 16]:

N N
Ezd(ti) = I/N Z [xdk(ti) -Xdfk(ti)] = I/N Z exdk(ti)

k=i k=1 (5-1)

where

Ed(t 1) = sample mean error (i.e. ensemble average error
over all n simulations) in x-dynamics position
at time t i

Xdfk(ti) = multiple model filter estimated x-dynamics valueat time t i for simulation k

xdk(ti) = truth model x-dynamics value at time t1 for
simulation k

ezdk(ti) = error in &-dynamics position at time tI for
simulation k

N = number of Monte Carlo runs

The sample variance of the error is given by:

N
rid 2(ti) = [I/(N-1)] Z exdkl2(ti) - iN/(N-1)] jd2ltl)

k=1 (5-2)

Two filter error parameters are of special interest in the

evaluation. The first is the error committed In estimating
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the target position. The second is the error committed in

estimating the centroid of the target images on the FLIR

plane. Both parameter's statistics are determined for the

propagation (t i or "minus"), and measurement update (ti+ or

"plusa) estimates, in the FLIR x and y directions. The

errors are measured in pixels relative to the center of the

FOV, a pixel being 20 micro-radians on a side.

Temporal averaging was also conducted on the mean error

and standard deviation time histories. Time averaging

provides a compact tabular evaluation of filter performance.

For trajectories one and two, the initial averaging was

conducted between t = 0.5 and t = 2.0 seconds. This time

interval was choosen as to allow initial filter transients

to die out, while not encountering the nominal minimum

range/maximum passing rate condition. This condition occurs

due to the target passing the sensor in the inertial x

direction. A second temporal averaging interval was choosen

from t = 3.5 to t = 5.0 seconds for maneuvering

trajectories. This interval allows most of the transients

due the to maneuver at t = 2.0 sec. to die out before

averaging begins. Care must be exercized in interpreting

the time average statistics, as misleading figures of merit

can result. For example, if the errors should follow a ramp

which reverses sign during the time interval, an

insignificant mean error will result. This could lead to

the erroneous assumption that an unbiased estimate was being
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generated by the filter. For this reason, the performance

plots and image greyscales are the major evaluation tools in

this study.

5.3 PERFORMANCE PLOTS FORMAT

The graphical representation of the filter performance

plots provides a descriptive format from which to evaluate

the algorithm. The plots are of x- and y- dynamics state

mean error and x- and y- centrold mean error, plus or minus

one standard deviation. Both propagated (minus) and updated
_4

(plus) error estimates are plotted. Figures 5-i and 5-2

present the filter y- axis dynamic state estimates prior to

(minus) and after (plus) measurement update, plotted against

real time. At t=2 seconds, a 10-g pull-up maneuver begins.

The increase in filter error, seen shortly afterward, is due

to filter's time response In adapting to the perceived
r

change in target trajectory. It is noted that the error

standard deviation is smaller for the "plus" estimate than

for the "minus*, demonstrating the expected reduction in

error after measurement incorporation. Figure 5-3 presents

the y-axis true rms error plotted with the filter's own

estimate of its y- rms error. The upper trace in this

figure is the filter computed rms error, with the lower

trace being the actual rms error. This plot is a good

indication of how well the filter is tuned. The increased
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actual error at approximately t = 2 seconds demonstrates the

increased filter error as a result of the maneuver. The L

corresponding increase in filter uncertainty is noted in the. -

filter's computed rms error.

5.4 GREYSCALE

A greyscale is a pictorial display of an image in which

shading of the image is used to indicate similar parameters.

In this effort, the greyscale figures present the 24 x 24

pixel FOV, with either the target image or template

indicated by the shaded region. Here the "darker" shaded

regions indicate a higher intensity, the darkness of a pixel

being defined by the fullness of a character in the

greyscale. For this effort the following scale applies:

Symbol Indicates intensity units

-(I<5
57I(10

+ 10(1<15
0 1571(20
% 201(<25
X 251(<30
• 30I<35
$ 351(<40
0 4071(45

>50

A typical greyscale plot is presented in Figure 5-4. The

top array shows an offcentered target Image. The Increased

intensity at the image center is visible. Above the array, r

-68-



RELATIVE PROBABILITIES = .9800, .0100, .0100
FRAME NUMBER 2

123456789012345678901234

2

4
5
6
7
8
9
10 ------
11 -+0*%%0-
12 +*%X$$%-
13 -O,%XX,+
14 ++000+
15 --
16
17
18
19
20
21
22
23
24

123456789012345678901234

2
3
4ii 5

6
7
8
9
10 

--

I-, 1it -++0*0+- .,

12 +O*%XX*-
13 +OX$X*-
14 -+O*%*+-
15 --++-
16
17
18
19
20
21
22
23
24

Figure 5-4. Greyscale Target Image and Template
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the frame number and relative probabilities, Pk, are

presented, P1, P2, and P3 respectively. For this effort all

greyscales pertain to small pixels, 20-micro rads on a side.

It is noted that although the array is 24 x 24, the small

FOV comprise only the center 8 x 8 grid; the remaining

pixels are the FOV padding discussed in Chapter 3. The

entire array in the greyscale figures are of intrest for a

large FOV filter.

5.5 PARAMETER VALUES

In this effort many of the parameter values that appear

in the equations discussed in earlier chapters are varied to

identify their effect on filter performance. This section

defines the nominal values of these parameters used as a

baseline in this research. Most of these values are the L
results of previous efforts, and in many cases were

established to provide the "best" performance.

5.5.1 TRUTH MODEL PARAMETERS. The nominal initial

conditions on all target trajectories in inertial space are:

Inertial position: x= 5000m

YI = 500m

z I = 20000m
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Inertial velocity: Vxi = -10O0m/sec k

Vyl = 0.

VzI = 0.

Inertial acceleration: axi = 0.

ay I = 0.

azi= 0.

The maximum intensity, Imax , of each of the three

hotspots is 20 Intensity units. The rms value of the

(spatially correlated) background and FLIR noises, vkl, used

in Equation (3-14), is one (intensity unit 2 ). The

corresponding signal to noise ratio, S/N, is then 20. This

value is representative of many tracking environments

(2,7,81. "

For a glint dispersion parameter of 2.0(pixels) 2 , and

aspect ratio of one, the resultant elgenvalues of the

dispersion matrix, P, In the target frame are both 2.0. The

atmospheric jitter rms value, i.e., the variance of 'A and

YA is .2(pixels)2 . These parameters define the truth model

discussed in Chapter 3.
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5.5.2 FILTER PARAMETER VALUES

As was discussed In Chapter 4, each elemental filter

was tuned to provide the best individual performance against

its specific trajectory. These tuning values are presented

in Table 4-1. In addition, the atmospheric noise variance

used here was .2(pixels)2 , with an atmospheric jitter

correlation time, rAF, of 0.07 seconds.

The initial hypothesis conditional probabilities are

0.98, 0.01, 0.01 for filters one through three,

respectively. The lower bound on these probabilities is

.001.

The ideal controller was used in the filter for all runs

except where stated. This controller assumes perfect pointing of
L

the FLIR/laser in less than one sample period.

5.6 DESIGNATION CODE

To facilitate identification of the simulation

parameters In the performance plots, a designation code was

established. This code consists of 3 major sections, as

presented below:

T2 GIO C.995

2 3

L
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1. Trajectory Type (TI,T2,T3,T4; see Section 3.6)

2. Maneuver g level (10, 20); this identifier is eliminated

for trajectory I

3. Parameter identifier; this identifier assumes nominal

parameter values where an identifier is not

specified. The # symbol following an identifier

indicates a numerical field defining the parameter

value. .

N - Nominal; nominal filter parameters as discussed in

Chapter 4.

IF - Simulation of an independent x- and y- channel

MMAF, as discussed in Section 6.2.1. 'h.L.

NUM - Shifting of the filter initial conditions to alter

the filter's numerical processing to establish

performance sensitivity in the area, as discussed

in Section 6.2.1.

C#- Non-ideal controller simulation. The numerical

field identifies the value of r(a), of Equation

~~(6-I).•..
r
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AR# - Aspect ratio sensitivity simulation; see Section

6.6.1.

SIN# - Signal to noise sensitivity simulation;

see Section 6.4.

ZO#- Inertial initial z coordinate. The following

numerical field identifies Z1 0 in kilometers.

NI -New image; redefined Image to prevent FOV S

saturation; see Section 6.5.

RF - Filter retuned to improve performance for an off-

design condition; see Section 6.5.

SA - Saturated target image; see Sections 6.5, 6.6.1, &

7.2.4.

BL* - Base line; Simulations with the "*" identifier have

the "BL*" simulations for a baseline. Identifiers

after the 0** in a designation code present

variations from the baseline.

MD - Multiple dispersion hotspots; see Section 6.6.2.
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IC - Inappropriate initial conditions applied to the

filter to demonstrate robustness to handoff

parameters at to.

SPN - Increased separation of the hotspots in the target

frame; see Section 6.6.2.

For example, following the designation code, the label;

T2GiOMD*SPN

indicates a trajectory two, 1O-g simulation with multiple

dispersion hotspots, with a baseline simulation identified

by *, with the variation on that baseline being an

Increased hotspot separation In the target Image.

5.7 SUMMARY

This section provided the tools used In the simulation

to evaluate the tracker performance. The designation code

used for quick identification of the performance plots is

also included.

1
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VI. ALGORITHM INVESTIGATION

6.1 INTRODUCTION

This chapter describes the Investigations conducted to .

evaluate algorithm characteristics, robustness, and

sensitivity to parameter change. The analysis of these

studies are also included in this chapter.

6.2 BIAS INVESTIGATION

Results of previous research encountered several

unexpected biases and apparent rampings of the dynamics and

centrold position error statistics (41. To identify and

correct these effects if appropriate, initially an indepth

checkout and rewrite of the simulation software was

conducted. Several software discrepancies were Identified -

with at least one direct impact on simulation results. The

rewriting and checkout of the software provided for an

Increased level of confidence In the simulation. The

remaining unexplained results were Investigated, assuming

them to be a legitimate characteristics of the filter.
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6.2.1 X-CHANNEL RAMPING

Research conducted by Loving [41 demonstrated a

significant apparent ramping of the mean, plus or minus one

standard deviation, in the x- dynamics errors and x-

centroid errors committed by the filter. The maneuver

initiation at t = 2 seconds generates a strong acceleration

in the FLIR y- direction but only a minor deceleration along

the FLIR x- direction, along which the velocity is

predominantly directed. For this reason the substantially

degraded performance in the FLIR x- direction was not

anticipated. Figures Al through A6 show the baseline

x-channel propagated estimate (ti-), (the minus indicating

the estimate prior to measurement incorporation) for a five

second simulation. The (ti+ ) estimate (the plus indicating

after measurement incorporation) results show identical

trends. Qualitative analysis shows the ramp slope to be of

decreasing magnitude with a decreasing maneuver turn rate.

It was not possible to determine qualitatively If a slight

ramping exists in the trajectory one five-second simulation

performance plots (Figures Al).

Numerical processing can easily be the dominant error

source In a standard Kalman filter implementation 15]. Since

the filters are implemented in absolute coordinates (as

discussed in Chapter 3), as the x- estimates increase in

magnitude, the small difference of large numbers could cause

r
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problems with numerical precision. In order to investigate

this possibility, the initial conditions on the true and

filter-assumed position states were changed. The new

initial conditions force the large absolute coordinate

processing to occur at the beginning of the simulation,

where previously no significant ramping occurred. Figure A7

shows a trajectory two simulation with a 20-g sustained turn

rate. As can be seen from this figure, no variation in the

x- channel ramping is apparent as compared to Figure A5. It

is concluded that numerical processing is not a significant

contributor in the x- filter errors. This result is

included here as additional validation to the simulation.

To define the apparent ramping better, the simulation

was extended to ten seconds. Figures A8 through A19 present

the x- channel extended simulation performance plots for

trajectories I and 2, with both 1O-g and 20-g cases for

trajectory two. As is clear from the trajectory 1 plots

(Figures A9 through ii), the ramping does not exist in the

trajectory one simulation. From this result it is concluded

that the ramping is a result of the sustained maneuver.

This result is also implied by examining Figures A12 through

Ai5 and A16 through Ai9, which qualitatively show the

ramping beginning at t=2 seconds. Examination of the

trajectory two, 20-g simulation (Figures A16-A19) shows a

leveling off of the filter error beginning at approximately . -

t=7 seconds. This implies a steady state error or maximum
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overshoot has been reached, rather than an unbounded ramping

process. Examination of the centroid error (Figure AIg)

shows the leveling off to occur at approximately t=6.5

seconds. Since the measurement (centroid position) is the

sum of the positions due to dynamics, atmospherics effects

and noise, the estimate of the centroid position must

improve (at the direct measurement level) before

improvements can be expected in the states xA or xD

individually. This would be realized by a leveling off of

the centroid error prior to that of the dynamic states.

This, in fact, is the result indicated by Figures A17 and

A19. Close study of the trajectory two, 1O-g dynamics plots

(Figures Ai3 and A14) does not provide conclusive results as

to whether a steady state error bias has been reached.

However, the centroid errors (Figure Ai5) does show leveling

off beginning at approximately t=8 seconds. This implies

that the dynamics position error is expected to reach steady

state at approximately t=8.5 seconds based on the 20-g

observations. Figures Ai4 and A15 support this rationale.

It is observed that for the 1O-g simulation the steady state

error is less in magnitude and is reached at a later time

than that for the 20-g case. Supporting the conclusion that

the ramping is due to the sustained maneuver, are the

trajectory three, 1O-g simulation results (Figures A20 -

A22). Figure A20 shows the x- dynamic errors beginning to

ramp as the maneuver begins at t=2 seconds. At t=3.5
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seconds, the maneuver ends and the error returns to

approximately zero mean. This is confirmed by the centroid

performance plot in Figure A21.

The mechanism largely responsible for this effect is

linked closely to the MMAF tuning. When the maneuver begins

at t=2 seconds, the y- FLIR component of the true target

velocity undergoes large relative changes. The MMAF then

adaptively "retunes" Itself in an attempt to track the

target. Specifically, elemental filter two (the wide FOV

filter) attains a hypothesis conditional probability orders

of magnitude above the other elemental filters. During this

time, the true velocity change in the x- FLIR direction is

rather benign. The x- FEIR trajectory is best matched by

filter one's tuning. However, since the MMAF is driven to

predominantly filter two by the filter two y- channel

residuals, the MMAF is significantly mistuned for the x-

FLR channel. This mistuning results in poor state

estimates, causing the increase in error. This effect is

demonstrated by simulating the x- inertial flight path for a

20-g trajectory 2, while the y- Inertial coordinate performs

a trajectory one flight path. The results of this

simulation are presented in Figures A23 through A26. A

reduction in error in excess of 50% at t=5 seconds is

iL realized due to the KMAF being relieved of the task of

tracking a highly dynamic y- channel; allowing the MMAF to

perform adaptive tuning specifically for the x- channel.
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The remaining error is conjectured to be a result of the

inadequacy of a linear filter dynamics model for this

application.

6.2.2 Y- CHANNEL RAMPING. Extending the simulation to ten

seconds, as discussed in Section 6.2.1, showed a divergent

ramping in the y position estimates for t5 seconds. This

divergence is not due to the inertial maneuver, as can be

seen in the trajectory one performance plots in Figures A27

through A30. Trajectory one shows a more severe divergence

than is seen with trajectory two 1O-g or 20-g cases; with

the 20-g case having the least divergent trends. It is

noted that in the absence of inertial maneuvering, the FLIR

plane sees an accelerating target, due to FLIR/target

geometry. The 20-g performance plots are presented in

Figures A31 through A34. In all cases the filter has

"knowledge" of the reduced performance, reflected in its

computed error covariance matrix, as can be noted from the

true RMS errors versus actual RMS error plots, Figures A27

and A3I. The initial hypothesis about the cause of this

effect, linked the divergence to the minimum range crossover

point, which occurs at t=5 seconds. However, simulation

with a crossover point at 8 seconds showed no variation from

I-1the y- errors as seen in the previous figures. Examination

of a nominal simulation greyscales plot time history

identifies oscillations of the target image, and template,
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in the y FLIR direction at various time intervals throughout j

the entire simulation. It is conjectured at this point that L

the divergence is due to an instability which grows slowly

enough not to be significant until t5 seconds. The cause of

this instability is conjectured to be model inadequacies

encountered by using linear filter models for dynamics that

would be better represented with a nonlinear model such as a . -

constant turn-rate model [11,16]. It would be worthwhile to

corroborate this conjecture by implementing a nonlinear

dynamics model. This was not accomplished in this effort in

order to perform higher priority analysis on the correlator

/linear Kalman filter, before changing the structure of that

algorithm.

6.3 NON-IDEAL CONTROLLER SIMULATION

The pointing controller is responsible for positioning

the FLIR sensor in preparation for incoming measurements,

and simultaniously pointing the line of sight along which

the laser energy will be sent. The commanded movement

2(ti+l-)mmaf, is ideally to be accomplished in one sample

period, or less. In mechanical systems, inertial effects,

servo lags, and backlashing can cause significant time

delays, resulting in pointing errors. This section

investigates the results of the tracking algorithm with a

first order lag pointing controller Implemented as discussed

-82-



in Section 4.4.

h

6.3.1 Investigation Tracking performance was evaluated for

a variety of controller time constants, a, in Equation

(4-17). Trajectories one and two (with 1O-g and 20-g turn

rates) were Investlgatcd. In order to attach more physical

meaning to the controller time constant, Equation (4-17) is

rewritten as

output(ti) = Sc(ti) r(a) (6-1)

where

Sc(ti) = the commanded movement of the FLIR sensor L

= A (ti-) - 1(ti~i)1mmaf

r(a) = the fraction of the commanded movement that
the output will realize

= -e-a t

output(t i) = the amount the FLIR sensor will actually

move.

For a fixed filter period, r(a) indicates the percent of the

commanded movement which can be accomplished in the sample

period for the given system time constant. This study used

a filter sample rate of 30 Hz.

The lower bounds for r(a) was established at 0.90, with

the corresponding a = 69.08, I.e., with lag time i/a =

0.0145 seconds. The system response modeled here Is

sufficiently slow as to provide x- pointing errors which

cause the target to appear outside the FLIR FOV, within one
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sample period. Values of r(a) between 1.0 and 0.90 were then

Investigated. The test points are presented In Table 6.1

Table 6-1
Controller Test Points

a i/a r(a) Trajectory 2 Turn Rate (g's)
1.0 10

186.438 .0054 .998 10
102.534 .0098 .967 10
89.8719 .0111 .95 10
89.8719 .0111 .95 20
77.708 .0129 .925 10
77.708 .0129 .925 20
69.08 .0145 .90

Selected performance plots from the cases of Table 6-1 are

presented in Appendix B. Performance plots which provide no

additional insight are omitted in order to keep the analysis

tractable.

Inspection of the r(a) = .998 simulation shows

no significant variation In performance from the case

without controller time lag effects, as can be seen in

Figures BI-B7. Figures Al through AI5 present nominal

performance for comparison. The next test point, r(a) =

.967, demonstrates slight reduction in performance during

the maneuver. Figures B8-B13 present the performance plots

for this case. The increased error in the x- channel Is

evident in the Increased slope of the error mean + one sigma

(Figures B8-BIO). The y- channel error Increase is seen in

the maximum overshoot at the onset of the maneuver, as well
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as the ramping of the error for t>3 seconds.

The ability to track the target prior to the maneuver

with no apparent error bias or ramping is also evident from

the figures. To investigate this robustness for t( 2

seconds, the greyscales of the target image and template are

presented in Figures 6-1 and 6-2. Figure 6-1 presents the

target image at frame one. The image is centered here since

an ideal handoff from the acquisition phase to the tracking

phase Is assumed. The lack of a template image for this

frame is noted, since there is no measurement prior to frame

one. For subsequent frames the target image is offset due

to imperfect pointing of the sensor, as is evident by Figure

6-2, corresponding to sample 40, at t = 1.33 seconds. Close

study of the frames of data in this time interval provide

valuable insight. First, the KNAF dynamic state estimates

in both x- and y- FLIR directions are very good for t< 2

seconds. This indicates the pointing offsets are not being

interpreted by the filter as a propagation error. This

conclusion is further substantiated by observing the target

image and template of the corresponding time interval.

Figure 6-2 is the grayscale for the r(a) = .95 simulation,

40th frame, and is characteristic of all the frames of data

for t( 2 seconds. As was previously noted, the target Image

is offset from the center of the FOV. Figure 6-2 shows that

the template, formed by centering these offcentered Images

and performing temporal averaging, is clear, well defined,
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Figure 6-1. Greyscale Target Image, Prior to
Template Formation
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Figure 6-2. Greyscale Target Image and
Template, Non Ideal Controller
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and centered. This indicates that good estimates of

apparent centrold position were supplied to the shifting

operation, as defined in Equation (4-6). If poor apparent

centroid estimates were made, the resulting templates would

appear as smeared or stretched, which is clearly not the

case in Figure 6-2. This template characteristic is

described in detail in Section 6.5. Stated another way,

with the target image significantly offset from the center

of the FLIR FOV, in order to form consistently correct

intensity functions (templates), the filter estimates of the

target apparent centroid must be accurate. Examination of

the propagated centrold errors show no significant error in

the propagated estimates of the apparent target position,
for all test points, t( 2 seconds. This leads to the

conclusions that the filter propagated and updated estimates

of the centroid are accurate. Since the dynamic state is

estimated accurately for this time Interval, the conclusion

is drawn that the offset is interpreted by the filter as

being due to atmospheric jitter, and that these states now

estimate the sum of atmospherics and the pointing offsets.

The filter's interpretation of the pointing offsets as

errors in the atmospheric jitter states rather than as

errors in the dynamics model provides robustness by

maintaining nominal tracking performance in the presence of

unknown pointing errors, for all test cases, in the interval

0 (t( 2 seconds.
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The 10- and 20-g trajectory 2 performance plots for rta)

= .95 (Figures B14-B26) show a different trend in the filter

error for t>2 seconds, as compared to results from the r(a)

= 0.967 case. In both the 10 and 20 g, r(a) = .95 cases,

the increasing x dynamics error takes a dramatic change

shortly after the maneuver begins, that was not in the r(a)

= .967 results. This large change in the filter errors is

due to the target Image moving significantly off the small

FOV, resulting in the large FOV elemental filter abruptly

assuming the highest pk(ti) value. The different dynamic

models in elemental filter one (small FOV) and elemental

filter two (large FOV), causes the different state estimates

apparent in the error shift. Inspection of the x- centroid

plots for the 10- and 20-g r(a) = .95 case indicates a

constant bias has been reached (Figures B19 & B25). Figure

6-3 shows the greyscale for r(a) = .95, frame 130. The

greyscale resolution is Insufficient to determine if the

template is being smeared slightly. It is concluded that

the filter is unable to obtain sufficiently precise state

estimates to allow for performance comparable to that prior

to the manuever. No additional insights are gained from the

r(a) = .925 case; for this reason the results are not

presented.
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6.4 SIGNAL-TO-NOISE RATIO SENSITIVITY ANALYSIS

In order to assess the filter's sensitivity to signal-

to-noise ratio (S/N), a series of simulations were conducted

with various values of S/N. The filter was not provided

knowledge of the S/N change, since the measurement noise

variance, R, is assumed constant in both the truth and

filter models. Trajectory 2, with 10- and 20-g turn rates,

was choosen to evaluate both maneuvering and non-maneuvering

performance. The nominal three-hotspot target was used with

parameters defined in Chapter 5. The various values of S/N

were created by altering the maximum intensity of each of

the hotspots. The signal to noise ratio is defined in this

effort as the ratio of the maximum intensity, of each

individual hotspot, IMAX , with the FLIR measurement noise

standard deviation, wn, as seen in Equation (3-15). Since

wn = 1.0 for this effort, the S/N is simply the value of

IMAX . It is pointed out here that, since the intensities

for the three hotspots are additive where the intensity

profiles overlap, FLIR pixels with intensities greater than

IMAX are possible. For this reason, the results of this

section should be used for trend information only, rather

than an absolute indication of performance capabilities.

6.4.1 RESULTS. The performance plots for the S/N

sensitivity analysis are presented in Appendix C. The

results are rather uneventful, showing a gradual reduction
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in performance as S/N is reduced. This reduction in

performance is seen as an increase in the mean error and L

standard deviation in the x- and y- FLIR positions. The y-

channel sees an increase in the maximum transient error due

to the maneuver, and a steady state bias at the lower values

of S/N. Time averaged error statistics can be useful for

this analysis, and are presented in Tables 6-2 and 6-3.

1.

Table 6-2
Time Averaged Statistics (mean ± r)

Error (Pixels) for .5 to 2.00 Seconds

S/N x + 9- g
20 .021 ± .441 .014 ± .392 -.017 ± .390 .019 ± .339 10
10 .015 ± .452 .023 ± .400 -.003 ± .385 -.004 ± .332 10
5 .056 + .482 .064 + .427 -.016 + .398 -.017 + .344 10
2 .156 ± .714 .168 + .659 .015 ± .544 .019 + .481 10
2 .156 + .714 .168 + .659 .015 + .544 .019 + .481 20
11.25 lost track 10

Table 6-3
Time Averaged Statistics (mean ± w)

Error (Pixels) for 3.5 to 5.0 Seconds

S/N - 9+ g
20 .301 + .454 .227 + .386 -.101 + .507 .040 + .461 10
10 .330 + .469 .255 + .404 -. 105 + .485 .033 + .438 10
5 .395 + .502 .321 + .433 -.047 + .554 .090 + .505 10
2 .532 ± .773 .462 + .714 -. 148 + .693 -.005 + .579 10
2 1.198 + .779 .958 + .700 -.261 + .629 -.001 + .565 20
1.25 lost track 10

The decrease in performance as S/N is reduced, Is evident

from Tables 6-2 and 6-3. At S/N = 1.25 the filter lost

track, which Invalidated the time averaged statistics. The
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reacquisition cycle allowed for continued tracking,

providing the "low" S/N performance as seen in the

performance plots, Figures C30 - C37. This results is

consistent with previous research where the the filter was

shown to loose lock on the targets with S/N between 1.0 and

1.5, even in single hotspot scenarios (10,14,161.

As the S/N is reduced, the filter's ability to identify

the target image from the background and FLIR measurement

noises is Impaired. This Is evident in the filter tuning as

seen in the filter-computed -vs- actual rms error

performance plots. Figures Cl, C14, C15, C21, C30, and C31

show that, as S/N is reduced, the actual RMS errors begin to

Increase above that of the filter- computed RMS errors.

This indicates that the "filter is not looking hard enough

at the measurements" (51 or, as in this case, cannot get

enough information from the measurements, indicaLing the

tuning is not optimal. The low S/N causes the true

measurment variance to increase, creating the mistuned

condition. Academically speaking, If one wanted to retune

the filter for a reduced S/N, it would be necessary to

Increase the measurement error variance, R, in the elemental

filters. Since this algorithm does not estimate R, the

filter has no way to self diagnosis its inappropriate

measurement error variance. The results herein demonstrate

a moderate robustness for S/N equal to or greater than 2.
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6.5 TARGET RANGE FROM SENSOR/PIXEL SIZE SENSITIVITY

ANALYSIS-

The target range from the sensor can affect the j
filter's performance. Several Issues come Into play as

range is reduced. First, FLIR plane velocities and

accelerations increase. Filter performance may be reduced

if the filter design point tuning is inadequate for the more

severe FLIR plane dynamics. In addition to mistuning, the

reduced range increases the size of the target image on the i

FLIR plane. As the target image increases in size, filling
Ik

the FOV, the measurement update capability is reduced due to

a partial loss of the target image.

Analogous to this effect is the issue of pixel size. I

By decreasing the size of each pixel in a fixed FOV array,

the image size is increased, giving the impression the range

has been reduced. The resultant dynamics appear less benign

as the pixel size is decreased as well, like the case of

actually reducing the range.

6.5.1 Investigation. In order to examine the MMAF's

sensitivity to range, a series of simulations with

trajectories that remain parallel to the xI - yl plane were

conducted, reducing the Inertial z- coordinate, zI from the

nominal value of z I = 20,000 meters. The filter was .

provided no knowledge or retuning to adapt to the parameter

change. Trajectory one was used primarily, to remove
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effects due to the maneuver, simplifying the tracking task.

Trajectory two performance was also investigated to identify

the algorithm's ability to track maneuvering targets at
..

close range. In some simulations, an incorrect initial

condition was introduced to the filter to study the filter's

robustness to poor initial acqusition parameters. The

filter's initial conditions are assumed to be provided by an

acquisition phase, which is not within the scope of this

effort. For simulation purposes, the filter's Initial

conditions on target position and velocity are obtained by

projecting the respective true initial inertial vectors onto

the FLIR image plane (assuming perfect handoff from the

acquisition phase). The acceleration initial condition are

obtained by differencing the true FLIR velocities over the

first two sample periods, and dividing the difference by the

sample period. The results are presented via performance

plots, in Appendix D. Figures Dt - D6 shows the performance

plots for zI  15,000 meters. The simulation was given the

FLIR nominal acceleration initial conditions for z1 = 20,000

meters. The mismatched initial condition are evident in the

x- error channels (Figures DI, D2, and D5). The incorrect

initial acceleration propagates error down into the position

states, as can be seen for t<1 sec. The y acceleration

initial condition does not introduce significant position

error here, as the acceleration error is negligible. The

results show a good recovery and nominal tracking,
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indicating a robust filter for this off design condition.

Filter robustness is further demonstrated by the z1 = 10,000 b

meters test point presented in Figures D7 - D12. The same

acceleration initial conditions were provided to the filter

as for the previous case. The initial transient here is

more severe, as can be seen in the x channel plots (Figures

D7, D8, and DIO). This is due to the relatively larger

error in the initial conditions.

The simulation was also conducted using trajectory 2,

with a 10-g turn rate. As can be seen from the x- channel

results, Figures D13, Di4, and D17, the filter errors are

very similar to the nominal case, with the exception of the

Initial transient due to the poor initial conditions. In

the y- channel however, an approximately 70% larger error

transient due to the maneuver commencing is observed.

Additionally, a bias of approximately 0.5 pixels is noted,

beginning after the transient (Figure Di5). It Is

conjectured at this point that the reduction in performance

is due to the mistuning at the off design point.

The filter's robustness at z I = 7,000 meters is tested

again by Introducing the FLIR acceleration Initial

conditions for z I = 20,000 meters. Here the x- acceleration

error Is a factor of 11.5 times that of the true Initial

Inertial acceleration. Although the filter x- error

transient is severe, the MMAF does recover by virtue of

elemental filter two's dynamics and wide FOV. The results
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for this simulation are presented in Figures D19 - D23. The

trajectory 2, i0-g simulation for z I = 7,000 meters was

conducted with an improved Initial estimate of the FLIR

acceleration. The estimate was obtained from the change in

the true velocity over the first two frames of data, as

discussed previously. As can be seen from Figure D24 - D31,

the Improved Initial accelerations aided the filter

performance significantly, however the filter was not able

to maintain a non-biased x- position error for t<2 seconds

(Figures D26, D27, and D30). Shortly after the start of the

maneuver (t=2.25), an approximately 1.25 pixel shift In the

mean error is observed in the x- dynamics (minus) estimate.

This was caused by a sudden shift of the hypothesis

conditional probabilities, Pk(ti), to weighting

predominantly elemental filter two, which was maintaining a

different vector of state estimates. A similar effect is

again observed at approximately t=3.9 seconds, where the

MMAF, which had once again predominantly weighted elemental

filter one, shifts suddenly back to filter two. Figure D24

shows the x- true verses the filter rms errors plot. The

plot shows the filter rms errors remain slightly greater

than the true errors, Implying an adaquate choice of the

filter's dynamic driving noise, QDF- In the y- channel, a

142% increase In the maximum overshoot, as compared to the

nominal (z[=20000 meter) case, due to the maneuver

initiation is noted, followed by an approximately .66 pixel
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bias in the y dynamic minus error estimate (Figure D28).

Figure D25 presents the y- true versus the filter-computed

rms errors. Here as in the x- channel, the plot indicates

adequate 9DF tuning for the off-design condition.

A zi = 5,000 meters, trajectory one, 10-g simulation was

also conducted. Figure D32 shows the true versus

filter-computed rms error plot for this case. As can be

seen, true error grows rapidly, exceeding the filter rms

error. This indicates the filter is inadequately tuned for

the harsh target dynamics projected onto the the FLIR plane,

at this range. At least one filter in the bank must be able

to maintain lock on a target conducting the harshest (but

reasonable) maneuver possible as seen at the minimum usable

range, or else the bank of filters is deficient, and the

MMAF cannot possibly maintain lock. The degraded

performance indicated in Figure D32 is apparent in the

x-position error plot of Figures D33 and D34. The filter

lost track during this scenario.

The results for the 5,000 meters case raises an

important issue. Is the poor tracking performance due to

improper tuning, even possibly inadequate models; or is the

filter not getting enough information from the measurement

update because measurements are poor? Figure 6-4 shows a

typical measurement during the simulation. As is observed,

the image fills the small FOV's 8 x 8 array, not allowing

the filter the entire target image for correlation. To
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investigate this issue, a single hotspot simulation

generating a small enough Image to fit well in the small k

FOV, was conducted for the 5,000 meters case. Figure 6-5

shows the target image used for this simulation. Results of

this case are presented In Figures D37 - D39. Examination

of Figure D37 indicates an improvement in the x-

measurements by the reduction in the true rms errors.

Figures D38 and D39 show Improved x- position estimates as a

result of these improved measurements. The Improved

performance verifies the hypothesis that the target image

size saturates the FOV, degrading the measurements. To

Investigate If filter tuning Is an Issue for this case, the

single hotspot run was repeated with a retuned bank of

filters. Each filter's dynamics noise variance, rDF, in the

2DF matrix defined In chapter 4, was increased by a factor

of four, and filter one's time correlation constant for

dynamics reduced from 3.5 to 2.5. The resultant performance L

is indicated in Figures D40 - D42. Figure D41 shows a

decrease In tracking error relative to the previous case.

The most substantial enhancement in performance is noted In

the update estimate of position, Figure D42. This is

expected since the higher filter dynamics model variance

more accurately accounts for the larger amplitude maneuvers.

A large Increase in error Is noted in the last second of the

simulation. It is conjectured to be due to the limited

adequacy In the "fixes" made in the last two cases. The
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reduced target/sensor range seen in the later portions of

the simulation results In more severe FLIR plane dynamics,

as well as an increse in the size of the target Image. It

is noted that the minimum range crossover point is reached

at t = 5 seconds. Figure 6-6 shows the single hotspot Image

at t=4 seconds. It is noted that the small FQV Is filled.

No additional insights were provided from the y- performance

plots. They are not presented for this reason. It should

be noted that the retuning of the MiIAF is not presented as

an optimal tuning. Although the true rms errors versus

* filter-computed rms errors indicate a well-tuned MMAF

(Figure D40), it may be more appropriate to examine the true

rms errors versus the filter-computed second central moment.

errors. This plot typically provides tuning Insights where

biases due to nonlinearities are present (6]. Figures D40-

D42 demonstrate that limited performance benefits can be

realized by retuning. Insignificant performance variation

..-

pr
was realized In a simulation In which the filter's dynamic

model variance was increased to eight times the nominal

value. However, as mentioned in Chapter 2, the addition of

pseudonoise in the filter's dynamics model in an attempt to

retune the elemental filters can result in a blurred

distinction between the estimates and residuals based on

different models. For this reason, It Is conjectured that a

limit on filter performance based on the elemental filters

used In this effort, has been reached. It would be
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necessary to evaluate MMAF performance, with a dedicated

elemental filter tuned specifically for a close range V

scenario with harsh dynamics, before statements on the

adequacy of linear filter dynamics models can be addressed.

6.6 TARGET SHAPE INVESTIGATION

The purpose of this section is to identify filter L

tracking characteristics for various target image functions.

This was accomplished by conducting simulations with

specific target image shapes and qualitatively evaluating .

tracking performance. This study should not be considered a

conclusive target shape sensitivity analysis, but rather an -

L° investigation of tracker characteristics and trends.

6.6.1 High Aspect Ratio Targets. An investigation into the

effects of high aspect ratio target images on tracker

performance was conducted. Aspect ratio and other target

image parameters are defined in Section 3.5. Test points

used for this study are found in Table 6-4.

Table 6-4
High Aspect Ratio Target Test Points

Hotspot
Case Trajectory AR Wpvo # Hotspots Position

(target frm)
nominal 1 1.414 3 +0.Sepvlev

1 2/10 g 5 1 2 +2.5epv
2 1 10 .707 2 ±2 .Sepv
3 1 .2 5 2 +2.5epv
4 2/10 g 5 .55 2_ 1.Oepv
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Case one involved an elliptical target shape with the

semi-major axis along the velocity vector. Figure 6-7 shows

the target Image greyscale at t=5/30 seconds and t=150/30 =

5 seconds. The Inclination of the target image due to the

maneuver is noted in Figure 6-7(b). The performance plots

for this case are presented in Figures El - E6. The x-

channel plots (Figures El, E3, E4) show very poor tracking

characteristics, with the filter losing lock slightly after

the maneuver begins. The large error shift at t=2.i seconds

is the reacquisition cycle resetting the MMAF after the loss

of track. Figures E5 and E6 show a lesser y- channel

degradation In performance by a larger-than-nominal

transient followed by a bias. The template and measurement

greyscales were used to gain insight into the reduced

performance. From Figure 6-7 it Is noted that the target

image extends beyond the small FOV array, in the x- FLIR

direction. The measurement update obtained from this Image

creates poor state estimates, which In turn causes poor

propagated state estimates. Case two was conducted to

Illustrate this effect. Figure 6-8 shows the Initial

centered target image and template. The "longer" target is

used to induce larger errors to amplify the mechanism. With

the target image filling the x- FOV, the filter's ability to

correlate between the template and target image Is impaired.

The result is poor x- state estimates. These errors prevent

proper image centering when forming the next template. The
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.-. temporal averaging of non-centered target Images causes the

template to be stretched or smeared. This Is evident In

Figures 6-9 through 6-11, which show the simulation results

from case two. The Figure 6-9 greyscale, (t=.5 seconds),

shows the target image walking off the FLIR image plane

while the template maximum intensity has been stretched

toward the right. The deformed template prevents the

algorithm from efficiently correlating the target image and

the template, impairing the filter from improving its

estimates. In addition, it was observed that, if the

algorithm can achieve some stability (but bias as well) in

the tracking of the target image on the FLIR plane, the

template will form offcentered, corresponding to this image.

This mechanism can be see In Figures 6-10, t=1 second, and

Figure 6-11, t=2 seconds. The resultant performance is seen

in the steady state x- errors, presented in Figures E3 and

E4.

The counterpart to case two was simulated In case three.

Here an ellipse with the semi-major axis in the y FLIR

direction is used. Examination of the greyscales showed
L.

that again the image, "walked off" from the center of the

FOV, with its offcentered template. Figures E7 and E9 show

nominal x- channel tracking for trajectory one. The y-

channel position errors shown in Figure EIO indicates

substantially degraded performance. It Is noted from the

true rms versus filter-computed rms error plot, (Figure E8),

-108-

.. . ... ... ... . ... ..... ..... i,... ,..,.,..- ...-.. ' ..- ' . -.. - ,,



RELATIVE PROBABILITIES = .9907, .0010, .0083
FRAME NUMBER = 15

123456789012345678901234-

2
3

5
6
7
8
9
10

12

13 -+O%$O###
14 --------
15
16
17
18
19
20
21
22
23
24

1123456789012345678901234

2
3
4
5
6
7
8
9
10

12 ------- 00**%XXXSSSSW$**
13 ...... 000O*%XX$00####@--
14-- - - - - - - -
15
16
17
18
19
20
21
22
23
24

Figure 6-9. Greyscale Target image and
Template, High AR case 2

-109-



- - T = - - 71 -7 -- -- 7- C . -. " -."- " -- " "- 2 --- , -°. - 2 - ." . F r .-i . r . "r .- .- . - r - r. "

RELATIVE PROBABILITIES = .9894, .0010, .0096
FRAME NUMBER z 30

- 123456789012345678901234

2
3
4
5
6
7
8
9
10
11
12 --- ++000**%%%%%**
13
14 +000000000
15
16
17
18
19
20
21
22
23
24
1123456789012345678901234

2
3
4
5
6
7
8
9
10

12 --++O0**%XXXe$$$@**$
13 -++0000*%XXSOO####@
1 4 ....
15
16
17
18
19
20
21
22
23
24

Figure 6-10. Greyscale Target Image and
Template, High AR case 2

-110-

"*-7



. . . .. ;. . .

RELATIVE PROBABILITIES = .9260, .0010, .0730
FRAME NUMBER = 60

123456789012345678901234

10

2
5
6
7
8
9 r
10
11 ....... O0000000
12
13 --- '.
14
15
16
17
18
19
20
21
22
23

123456789012345678901234

2
3
4
5
6
7
8
9
10

12 --++00*-"XS*@ggg
13 -,O
14 "-- -
15
16
17
18
19
20
21
22
23
24

Figure 6-11. Greyscale Target Image and
Template, High AR case 2

-111- ..



that the filter was not aware of its degraded performance,

which was not the case in the previous test case. As a

result, the reacquisition cycle was not used and the steady

state error not realized until late In the simulation as

seen in the y- position error plot in Figure ElO.

To assess the filter's ability to correlate the high

aspect ratio target shape function without the penalty due

to overextending in the FLIR plane, case four was conducted;

case four utilizes a target Image that fits "well" into the

small FOV. Figure 6-12 shows the target image and template

for t=5 seconds. Again note the inclination in the image

due to the maneuver. Figures Eli - E16 show the performance

plots for this case. A degradation in performance is noted

In the y- channel as a larger transient due to the maneuver.

Both the x- and y- channels exhibit a bias after the

begining of the maneuver. However, case four shows a

significant improved performance as compared to case one.

This again identifies the effects of too large a target

image or too small a FLIR tracking window on the state

estimates. A slightly reduced ability to track high aspect

ratio targets is noted when image extension beyond the FOV

boundries Is not a factor.

6.6.2 Multiple Dispersion Hotspots. This section

investigates tracker performance against a multiple hotspot,

multiple dispersion target image. The dispersion of a

hotspot image defines the spatial spread or gradient of the
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hotspot intensity; analogous to the covariance, in a

bivarlate Gaussian probability density function. For this

study, a two-hotspot target model, each spot having a

different dispersion matrix, was used. The effect on the

target image is to create a more distinctive target shape by

incorporating a steep intensity gradient hotspot, with a

nominal hotspot. To this end, the following 2-dimension

target frame dispersion matrices were used:

E= 2 0] _P2 =[02 020 0 0.2]

where In terms of the notation of Section 3.4,

=i v 02 1 i=1,2pv i

6-0

and P, is the nominal dispersion matrix P. Note both

hotspots have circular constant-intensity contours.

Tables 6-5 and 6-6 present the time averaged statistics

for a trajectory 2, 10-g simulation for this case. The

first entry Is a two-hotspot nominal dispersion baseline.

The second presents the multiple dispersion hotspot results.

Table 6-5 Trajectory 2, 10 g; Two Hotspots
Error (Pixels) from Time .5 to 2 Seconds

Dispersion M^ y+ - +

E1 = P2 -.014+.444 -.002+.389 -.026+.385 -.028+.332
EIt =  I10 2 .0567. 449 .0637.395 .0147.388 .0137.336

r
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Table 6-6 Trajectory, 10 g; Two Hotspots
Error (Pixels) from Time 3.5 to 5 Seconds

A -- + A + '.

Dispersion x x y
Et = P2 .307±.464 .232±.401 -.455±.425 -.321±.368
EI = IOE2 .455±.466 .383±.397 -.460±.466 -. 311±.366

From Tables 6-5 and 6-6, it is apparent that although a

decrease in performance is perceptible for the multiple

dispersion case, the degradation is insignificant. This

result is confirmed by comparison of the performance plots

in Figures E17 - E20,(two hotspots with PI = 22), and

Figures E21 - E24 (P1=10P 2 ). The result implies the

algorithm is capable of correlating the more distinct,

complex shape function encountered here, with little

difficulty, resulting in insignificant performance

degradation

In order to define each hotspot more clearly on the

FUIR image plane, the hotspot separation was increased by a

factor of 5. This reduces the overlapping of the individual

hotspot intensity functions, causing a more distinct,

complex shape functions. The performance of the tracker

against this target showed significantly larger errors, in

the form of an imediate ramping of the errors for t> 0.

This result is presented in the performance plots of Figures

E25 - E28. This result is not surprising. As the hotspots
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become more distinct, changes in the target shape functions

due to changing target/sensor geometry are more

distinguishable. This results in correlation problems with

the slower changing template, resulting In Increased state

estimate errors. This effect was also observed in

simulations in which a single dispersion matrix was used for -,

both hotspots, where hotspot separation caused a distinct,

complex, changing shape function.

6.6.3 Target - Decoy Experiment. For many years targets

have employed flares or chaff, as decoys to defeat infra-red

sensors. This section presents an experiment in a sudden

dramatic change of the target image, to simulate such a

flare or chaff release. It should be note that this section

Is not a tactical decoy sensitivity analysis, but an

experiment to provide Insight into tracker characteristics.

The experiment consists of tracking a single hotspot

target for one second. The target is performing a

"trajectory one" flight path. Figure 6-13 shows the target

image and template during this time. At t=i sec., a second

hotspot is turned on, 'behind' the centered target image.

This simulates the release and subsequent ignition of a

flare or chaff. The second hotspot is identical to the

first, except that the maximum intensity Is a factor of 2

greater. Once the second hotspot is turned on, the 2

hotspots are separated in the FLIR y direction to simulate

the target movement away from the chaff. Figure 6-14 shows
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the target Image and template at t=l second. Figures 6-15

through 6-18 present sequential target Images and templates,

showing the tracker's reaction to the changed shape

function. As the greyscale presents, the tracker

Immediately shifts off the target toward the centroid of the

two hotspots (Figure 6-16). Template realization of the

second hotspot, which now corresponds to the target, is slow

due to temporally averaging essentially zero intensity in

the corresponding pixels prior to the chaff release. This

is compounded by the target/decoy relative dynamics,

shifting the target's image toward the edge of the FOV as

the algorithm predominantly tracks the decoy (Figure 6-15).

As the state estimate errors Increase, the template's

predominate Image becomes smeared due to inaccurate

centering of the new measurement Image (Figures 6-17 and

6-18). The tracker ultimately locks onto the decoy,

allowing the target to move off the FOV. Figure 6-18 shows

the results for t=2.0 seconds; the tracker Is locked on the

decoy, with an appropriate template. The Monte Carlo

performance plots of the experiment are presented in Figures

E29 through E34. Figures E31 - E34 show the immediate

divergence of the position errors at the release of the

decoy. The apparent x- channel recovery shown in Figures

E31 and E32 Is misleading. The reduction In error Is a

result of the target/decoy mechanism employed In the

simulation. The target has moved "underneath" the decoy on
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the FLIR plane, resulting in the reduction of x- channel

errors. The error reduction was in no way achieved by the

tracker. Figures E29 and E30 show the x and y true verses

actual rms errors. These plots indicate the filter is

unaware it is tracking a decoy.

6.7 SUMMARY

This chapter has presented the investigations and

analysis conducted to evaluate the three-filter Bayesian

MMAF tracker algorithm. A summary of the results along with

the conclusions drawn from the analysis of this chapter, are

presented in Chapter 7.
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VII. CONCLUSIONS AND RECOMMENDATIONS .

7.1 INTRODUCTION

This chapter summarizes the observations and

conclusions drawn In Chapter 6. Insights from each

investigation are combined to form conclusions of the

overall algorithm characteristics. Recommendations for

tracker evolution and further investigation are included.

7.2 CONCLUSIONS

7.2.1 Bias Investigation. The x- position bias errors

presented in Figures A3 and A5 are a result of the algorithm

tracking a target performing a high-g, constant turn rate

maneuver. The apparent ramping is, in fact, an error

transient, prior to reaching a steady state bias. The

simulated maneuver is more severe than would exist In an

anticipated tracking scenario. The step Input of 1O-g or

20-g accelerations places a high demand on the filter,

while a reduced transient would be expected with a more

realistic maneuver. A major cause of the bias is the MMAF

mistuning the x- channel. In order to maintain lock on the

highly dynamic y- channel transient, the MMAF adaptively

tunes to predominantly elemental filter two, i.e., the wide

FOV filter tuned for harsh maneuvers. This MMAF tuning is
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not suited for the relatively benign x- channel dynamics,

resulting in reduced tracking performance. Results show

that over 50% of the bias in the 20-g trajectory two

scenario, is due to this mistuning. This motivates the

concept of Individual x, y channel, multiple model adaptive

filtering, allowing adaptive filtering for the x and y FLIR

channels independently. However, this approach would be

computationally more burdensome, requiring twice the

residual monitoring. The remaining bias is attributed to

the inadequacy of the linear dynamics model for very harsh

target dynamics. This motivates the consideration of an

extended Kalman filter, to allow for the nonlinear, constant

turn rate dynamics model [71, while still maintaining the

linear measurement update formulation via the enhanced

correlator.

7.2.2 Non-Ideal Controller. Investigation of filter

performance with first order lag pointing errors showed the

algorithm to be robust to dynamic lags, within the

limitations of the modeled FOV. This robustness is

attributed to the atmospheric states absorbing the pointing

errors, allowing the dynamics states to Ignore the

controller error, for relatively benign target trajectories.

A moderate degradation in performance was noted for highly

dynamic targets. However, the tracker was able to maintain

lock on a 20-g maneuvering target. The limiting factor in

the study was the size of the FOV. With sufficiently slow

r
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controller dynamics, the target image is not maintained in

the small FOV. For the FOV used in this effort, the filter

Immediately lost track when r(a) (.90, where r(a) Is defined

In Equation (6-i). This motivates Investigation of a larger
... .p.

FOV for an elemental filter tuned for benign dynamics. In .

addition, It would imply that a pointing reacquisition cycle

would be advantageous, to bring back on line filters which

have lost track due to pointing errors, and recenter the

target image on the FOV. It Is noted that the reacquisition

cycle discussed in Chapter 3 assumes the FLIR sensor is

instantaneously pointed at the new state estimate. This

assumption Is not valid for Lhe non-ideal controller. To

compensate for the controller lags in the reacquisition

cycle, it may be possible to adjust the commanded control by

the amount I/r(a). By purposely commanding (i/r(a)] &c, the

actual control (the output as seen in Equation (6-i)) is

changed to equal to the desired control, Sc. This
r

compensation would require some type of estimate of the

controller lags. It is reasoned that, even without a FOV

size limitation, a sufficiently slow system would cause

filter divergence. This would be as a result of the

pointing errors becoming so large as to prevent the

atmospheric states dynamics model from propagating adequate

estimates.

Although tracker performance did show a certain amount

of robustness, filter knowledge of the controller dynamics
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on performance specifications and controller system

dynamics. Increasing the measurement noise variance may

provide an ad-hoc method to compensate for the controller

errors, without requiring addition computation. The

pointing errors term, as seen in Equation (4-18), could be

incorporated Into the measurement noise, v(ti), allowing the

measurement equation to be written In the form of Equations

(4-10) and (4-13).

7.2.3 Signal to Noise Ratio Sensitivity. The S/N

sensitivity analysis showed a smooth decrease in performance

with decreasing S/N, from S/N = 20 to S/N = 2. By reducing

the S/N a factor of 10, the mean error increased less than

1.0 pixel in the FLIR x- and 0.2 pixels In the FLIR y

coordinate, during a steady state, sustained 20-g maneuver

(with initial velocity mostly In the x- direction and the

maneuver acceleration predominantly In the y- direction).

Equally as important, the maximum standard deviation

increase was approximately .33 pixels and .1 pixels in the

FLIR x and y coordinates, respectively, under the same

conditions. The standard deviation is significant as it Is

necessary to deposit sufficient laser energy within a

specific region on the target to achieve a reasonable

probability of kill, and not *paint' the target. An

Inherent weakness In the enhanced correlator/linear Kalman

filter Is the larger nominal tracking error standard

deviation relative to the extended Kalman filter [4,161. Low
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standard deviation magnitudes and sensitivity are essential

If this algorithm Is to remain a viable alternative tracking 9

algorithm.

7.2.4 Target Range from Sensor. Robustness analysis

showed that the MMAF maintained track, for handoff initial

accelerations a factor of 11.5 in error, at ranges of 8,600

meters, with nominal tuning as described in Section 5.5.

This result implies that a highly accurate velocity or

acceleration acquisition handoff is not necessary. This

softens the requirements on the acquisition algorithm.

Performance analysis of tracking targets at various

inertial crossing distances demonstrated a gradual reduction

in performance as zI was reduced from 20 km to 7 ki, for

both benign and 10-g maneuvers. At 5 km crossing range the

algorithm lost track. The mechanism behind the reduced

performance and eventual loss of track is two-fold. First, ,-'-

the Increased size of the target at close range, saturated
L.

the small FOV. The saturated FOV prevents adequate

correlation between the target image and the template. This

result is not surprising. The sizing of the FOV must take

Into account the target image size relative to the FOV. A

second, and more pressing result Is the inadequacy of the

elemental filter dynamics model used In this effort for
0

close tracking scenarios. The limited performance benefit

gained by retuning the elemental filters indicates a .. -.

performance limit may have been reached. The addition of
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more pseudo-noise in an attempt to improve tuning is not

considered a viable approach, for the reasons presented in

Chapter 2. This motivates the addition of a another linear

elemental filter, specifically tuned for the extremely harsh

maneuvers encountered In the close tracking scenarios.

However, in light of the retuning attempts made in this

effort, it may be necessary to include a nonlinear dynamics

model in the MMAF algorithm, In order to improve performance

in close range tracking scenarios.

7.2.5 Pixel Size. Analogous to range from sensor, is the

issue of pixel size. Results of this effort clearly

establish the degraded performance associated with

saturation of the FOV. To avoid this with a fixed number of

pixels, it is necessary to size each pixel large enough to

provide good Image shape for correlation. An additional .

benefit in an increased pixel size is the resulting FLIR

plane dynamics are more benign. On the other hand, larger

pixels have reduced resolution, since the intensity Is

averaged over the larger pixel area. This results in

reduced performance, due to poorer correlation. This is

evident In the significantly reduced performance realized

when the target image extends outside the center 8x8 pixel

array into the outer frame, so that filter performance

becomes more dependent on an elemental filter with a large

FOV composed of pixels with poorer resolution.

r
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7.2.6 Target Shape Investigation. Results from the high

aspect ratio simulations show a slight degradation in

performance for tracking target Images with aspect ratios as

high as 5, while the target image image does not saturate

the small FOV. The degraded performance is realized in the

coordinate along the semi-major axis of the ellipse and Is a

result of less accurate correlation along that direction.

The performance degradation Is severe If the seml-major axis

extends over the entire FOV, saturating a FLIR coordinate

direction. The resultant poor state estimates cause a

smearing or stretching of the template due to the

non-centering of successive frames of data, in the

formulation of the template. A steady state bias Is formed

in many cases when sufficient stability of the tracker

allows time for the stretched, offcentered template to

reform, emulating the apparent target image. If the

ellipticity is sufficient to prevent saturation in the

semi-minor axis FLIR plane direction, the corresponding

channel will produce nominal state estimates, provided that

the saturated channel does not "walk" the Image off the FOV.

The template smearing or stretching mechanism was also

observed in non-elliptical target image simulations. Poor

target centrold position state estimates as a result of

target dynamics or rapidly changing shape functions are the

prerequisites for this effect.

It is desirable to define the result "FOV saturation".
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Simulations in which the center 8 x 8 "small FOV" was fully

populated with pixel intensities, providing no edge to the

shape function, clearly displayed degraded performance.

However, It must be noted that the center 8 x 8 array is ..

padded with the corresponding data and noise, extending the

8 x 8 array to 24 x 24 pixels for FFT generation, for the

small FOV filters. However, the frame surrounding the

center 8x8 array is composed of pixels with significantly

lower resolution as compared to the center array. It should

be noted here, that the poorer resolution in the padding

pixels are a result of the FLIR sensor modeling in the truth

model. This should not be confused with the reduced

resolution of the larger pixels, used in the wide FOV

elemental filter. Results show that performance is

significantly reduced where target/template correlation

involves the outer frame pixels. As a result, the FLIR

saturation Is defined as the condition where the FOV is

unable to display well defined, perceptible edges In the

target Image. For the FOV used in this effort, this

requires the target image to be well within the center 8x8

.small' FOV array for elemental filter one or three

tracking.

Simulation results also provide insights into more

complex shape functions. The results from multiple

dispersion hotspots showed insignificant performance

degradation as compared to the two hotspot baseline case.
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This is significant since actual multiple hotspot target

intensities functions rarely have similar gradients

surrounding all intensity peaks. A significant performance

degradation was noted when the individual hotspots were

separated sufficiently to define individual intensity

gradients better. This is due to the dramatic target image

changes that are realized as the target/sensor geometry

changes. With the larger hotspot separations, even the same

slow angular rates can yield more dramatic changes In the

image. The template, with its temporal smoothing formation,

reacts too slowly to allow adequate target image/template

correlation. Thus, with larger hotspot separations, the

temporal averaging of a target undergoing angular

orientation changes causes greater impairment of a well

resolved target image template that might well match the

target shape without the distortions caused by averaging.

This result was observed In multiple and singular dispersion

simulations. Adjusting the smoothing constant to allow for

faster template dynamics should be done carefully.

Discounting previous measurements prematurally defeats the

noise rejection function of the smoothing algorithm. This

result should be taken into account when establishing pixel

resolution, and a tracking range design point. Too much

detail, with sufficient separation, can result in a target

image with a highly dynamic shape function, impairing

correlation. This could establish a minimum tracking range
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in addition to model adequacy discussed in Section 7.2.4.

7.2.7 Target-Decoy Experiment. This set of simulation

results displays the tracker's indifference to the target in

order to track the hotter decoy. This implies the

correlation algorithm "prefers to fit" the current template

into the hotter of the two images. As the template begins

to acknowledge the second hotspot, the MMAF appears to track

the centroid of the two images. However, the target/decoy

dynamics cause the hotspots to separate, preventing the

Inclusion of both in the FOV. At this point, the MMAF

rejects the target image for the decoy. It is noted that the

template "behaved" as desired, rejecting for the most part

the formation of a second hotspot, maintaining an

appropriate shape function estimate. The "weak link" in

rejecting the decoy Is clearly the correlator. This result

is disappointing. It had been hoped that, after tracking

the target successfully for 30 frames, the filter would

reject the second hotspot as noise because of its different

dynamics and intensity shape function. This experiment

indicates a viable means of defeating the tracker.

Investigation into this problem is warranted. An additional

problem scenario which is implied by this result is that of

tracking multiple targets which would co-occupy the same

FOV. These results motivate a smaller FOV. The Inability of

the algorithm to reject a large hotspot Implies the need for

isolating the target image as much as possible. In

-134-



."7 -7 - " °,

addition, it may be possible to reject the decoy by the use

of artificial intelligence concepts. Information supplied to

the algorithm, based on a study of the residuals and image

characteristics, could provide a means of logically and

consistantly rejecting chaff or other countermeasures.

7.3 RECOMMENDATIONS

The following recommendations are made as a result of

this effort.

I. Assess performance tradeoffs for individual x, y

channel multiple model adaptive filtering.

2. Assess the performance tradeoff for implementing an

extended Kalman filter with a nonlinear dynamics model

(constant turn rate) [71 and linear measurements. This

formulation would not require the high computational

loading associated with nonlinear measurments [10,141.

3. Perform a close range tracking scenario performance

tradeoff. This analysis should include:

i. benefits of nonlinear constant turn rate

dynamics model
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ii. optimal tuning of the current algorithm to

evaluate if DF scheduling as a function of range

Is feasible. This could be accomplished with

sparse active sensor data to supply range and and

possibly range rate, to identify the appropriate

RDF-

III. the addition of an elemental filter tuned

specifically for the close range scenario with

harshest expected target maneuvers as seen at that

range

iv. investigate alternative trackers such as the

extended Kalman filter formulation [161

v. effect of multiple hotspot definition and Z

separation at close ranges

4. Conduct an indepth target/decoy sensitivity analysis.

Tracker sensitivity to the following parameters should

be Investigated:

I. decoy intensity, shape, and size

ii. separation from target during decoy ignition

ill. tracking time prior to decoy release
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iii. tracking time prior to decoy release

iv. analysis of image and/or residual characterstics

that might be useful to distinguish between true

targets and decoys, perhaps by invoking A.I.

concepts.

5. Incorporate an additional filter, with a wide

FOV and benign dynamics model. This filter could be

used as an acquisition filter as well as aid in tracking

performance.
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APPENDIX A
BIAS INVESTIGATION

The figures contained in the following appendices
(A through E) use the designation code described In
Section 5.6
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Abstract

Previous studies at the Air Force Institute of
Technology have led to the development of a multiple model
adaptive filter (MMAF) tracking algorithm which provides
significant improvements in tracker performance against
highly-dynamic airborne targets, over the currently used
correlation trackers. A forward looking Infra-red (FLIR)
sensor is used to provide a target shape function to the
tracking algorithm in the form of an 8 x 8 array of
intensities projected onto a field of view (FOV). This
target image measurement is correlated with an estimate of
the target Image, a template, to produce linear offset
pseudo-measurements from the center of the FOV, which are L.
provided as measurements to a bank of linear Kalman filters,
in the multiple model adaptive filtering (MMAF) structure.
The output of the MMAF provides the state estimates used in
pointing the FLIR sensor, and generating the new target
image estimate. This study Investigates the characteristics
of this algorithm in order to evaluate Its performance
against various target scenarios.
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